Quelques modèles en Transport Optimal de mesures à valeurs vectorielles

Xavier Bacon

Soutenance de thèse, sous la direction de Bruno Nazaret

2 décembre 2022

1 Introduction au Transport Optimal

- 2 Transport Optimal multi-espèces B., Journal of Optimization Theory and Applications, 2020.
- 3 Un problème spatial d'échanges économiques à la Pareto B., G. Carlier, B. Nazaret, accepted for publication in Applied Mathematics and Optimization Journal, 2022.
- **4** Transport Optimal de matrices SDP et distance de Bures-Wasserstein *B., F-X. Vialard*

1 Introduction au Transport Optimal

2 Transport Optimal multi-espèces B., Journal of Optimization Theory and Applications, 2020.

3 Un problème spatial d'échanges économiques à la Pareto B., G. Carlier, B. Nazaret, accepted for publication in Applied Mathematics and Optimization Journal, 2022.

4 Transport Optimal de matrices SDP et distance de Bures-Wasserstein *B., F-X. Vialard*

Introduction au Transport Optimal (1/2)

µ ∈ 𝒫(X), v ∈ 𝒫(Y) désignent respectivement les distributions initiale et finale.
 c = c(x, y) est le coût de transport.

Le problème de Transport Optimal (TO) est défini par

$$\mathscr{T}_{c}(\mu,\nu) = \inf \left\{ \int_{X \times Y} c(x,y) \, \mathrm{d}\gamma(x,y) \, \mathrm{t.q.} \, \gamma \in \Pi(\mu,\nu) \right\}$$

où $\Pi(\mu, v)$ désigne l'ensemble des mesures $\gamma \in \mathscr{P}(X \times Y)$ admettant μ et v comme marginales, appelées **plans de transport**. **Dualité** Étant un problème de minimisation convexe, $\mathscr{T}_c(\mu, v)$ admet

comme formulation le problème de maximisation concave suivant

$$\mathscr{T}_{c}(\mu,\nu) = \sup\left\{\int_{X} \varphi(x) d\mu(x) + \int_{Y} \psi(y) d\nu(y) \text{ t.q. } \varphi(x) + \psi(y) \leq c(x,y)\right\}$$

où φ et ψ sont deux fonctions continues et bornées.

イロト イロト イヨト イヨト

Introduction au Transport Optimal (2/2)

X, Y supposés finis et $\alpha = (\alpha_i) \in \mathbb{R}^X$, $\beta = (\beta_j) \in \mathbb{R}^Y$ désignent les distributions initiale et finale.

TO Entropique : il s'agit d'un outil efficace pour calculer une approximation de $\mathscr{T}(\alpha, \beta)$: $\varepsilon > 0$ étant fixé, le problème de TO régularisé est donné par

$$\mathscr{T}^{\boldsymbol{\varepsilon}}(\alpha,\beta) = \inf \left\{ \langle \boldsymbol{c} \mid \boldsymbol{\gamma} \rangle - \boldsymbol{\varepsilon} \operatorname{Entropie}(\boldsymbol{\gamma}) \text{ t.q. } \boldsymbol{\gamma} \in \Pi(\alpha,\beta) \right\}$$

dont l'unique solution converge vers la solution de $\mathscr{T}(\alpha,\beta)$ d'entropie maximale. **Calcul de la solution de** $\mathscr{T}^{\epsilon}(\alpha,\beta)$: les conditions d'optimalité s'écrivent ici

$$\gamma_{ij} = u_i K_{ij} v_j$$

où $u_i = \exp(\varphi_i/\varepsilon)$, $v_j = \exp(\psi_j/\varepsilon)$ et $K = \exp(-c_{ij}/\varepsilon)$. On utilise l'algorithme de Sinkhorn pour approximer la solution de $\mathscr{T}^{\varepsilon}(\alpha,\beta)$: partant de $u^0 = \mathbb{1}_X$ et $v^0 = \mathbb{1}_Y$, on calcule de manière itérative

$$u^{k+1} = \frac{\alpha}{K \cdot v^k} \text{ et } v^{k+1} = \frac{\beta}{K^T \cdot u^{k+1}}, \text{ for } k \in \mathbb{N}.$$

1 Introduction au Transport Optimal

- 2 Transport Optimal multi-espèces B., Journal of Optimization Theory and Applications, 2020.
- 3 Un problème spatial d'échanges économiques à la Pareto B., G. Carlier, B. Nazaret, accepted for publication in Applied Mathematics and Optimization Journal, 2022.
- **4** Transport Optimal de matrices SDP et distance de Bures-Wasserstein *B., F-X. Vialard*

Du TO scalaire au TO multi-espèces

From scalar to Multi-species Optimal Transport

 $\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 8/34

From scalar to Multi-species Optimal Transport

 $\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$

Quatre coûts de transport différents c_{11} , c_{12} , c_{21} , c_{22} .

From scalar to Multi-species Optimal Transport

 $\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$

Quatre coûts de transport différents c_{11} , c_{12} , c_{21} , c_{22} .

 \blacksquare ... Et autant de plans de transport γ_{11} , γ_{12} , γ_{21} , γ_{22} .

8/34

・ロト ・ 同ト ・ ヨト

	TO Multi-espèces
Distributions initiales	
Distributions finales	
Plans de transport	
$Primal:(\mathscr{P}_1)$	
$Dual$: (\mathscr{D}_1)	
Conditions d'optimalité	
TO Entropique	

	TO Multi-espèces
Distributions initiales	$oldsymbol{\mu}=(\mu_i)\in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n\mu_i\in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y)$ t.q. $\sum_{i=1}^m v_j \in \mathscr{P}(Y)$
Plans de transport	
$Primal:(\mathscr{P}_1)$	
$Dual:(\mathscr{D}_1)$	
Conditions d'optimalité	
TO Entropique	

	TO Multi-espèces
Distributions initiales	$oldsymbol{\mu} = (\mu_i) \in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n \mu_i \in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y) \text{ t.q. } \sum_{i=1}^m v_j \in \mathscr{P}(Y)$
Plans de transport	$\boldsymbol{\gamma} = (\gamma_{ij}) \in \mathcal{M}_{+}^{n \times m} (X \times Y) \text{ t.q. } \begin{cases} \pi_1 \# \sum_{k=1}^m \gamma_{ik} = \mu_i \\ \pi_2 \# \sum_{k=1}^n \gamma_{kj} = \nu_j \end{cases}$
$Primal:(\mathscr{P}_1)$	
$Dual:(\mathscr{D}_1)$	
Conditions d'optimalité	
TO Entropique	

	TO Multi-espèces
Distributions initiales	$oldsymbol{\mu} = (\mu_i) \in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n \mu_i \in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y) \text{ t.q. } \sum_{i=1}^m v_j \in \mathscr{P}(Y)$
Plans de transport	$\boldsymbol{\gamma} = (\gamma_{ij}) \in \mathcal{M}_{+}^{n \times m} (X \times Y) \text{ t.q. } \begin{cases} \pi_1 \# \sum_{k=1}^m \gamma_{ik} = \mu_i \\ \pi_2 \# \sum_{k=1}^n \gamma_{kj} = \nu_j \end{cases}$
$Primal:(\mathscr{P}_1)$	$\mathscr{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \sum_{i,j} \left\langle c_{ij} \mid \gamma_{ij} \right\rangle$
$Dual$: (\mathscr{D}_1)	
Conditions d'optimalité	
TO Entropique	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	TO Multi-espèces
Distributions initiales	$oldsymbol{\mu} = (\mu_i) \in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n \mu_i \in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y)$ t.q. $\sum_{i=1}^m v_i \in \mathscr{P}(Y)$
Plans de transport	$\boldsymbol{\gamma} = (\gamma_{ij}) \in \mathcal{M}_{+}^{n \times m} (X \times Y) \text{ t.q. } \begin{cases} \pi_1 \# \sum_{k=1}^m \gamma_{ik} = \mu_i \\ \pi_2 \# \sum_{k=1}^n \gamma_{kj} = \nu_j \end{cases}$
$Primal:(\mathscr{P}_1)$	$\mathscr{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \sum_{i,j} \left\langle c_{ij} \mid \gamma_{ij} \right\rangle$
$Dual:(\mathscr{D}_1)$	$\sup \sum_{i=1}^{n} \langle \varphi_i \mu_i \rangle + \sum_{j=1}^{m} \langle \psi_j \nu_j \rangle \text{ t.q. } \varphi_i \oplus \psi_j \leq c_{ij}$
Conditions d'optimalité	
TO Entropique	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	TO Multi-espèces
Distributions initiales	$\boldsymbol{\mu} = (\mu_i) \in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n \mu_i \in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y)$ t.q. $\sum_{i=1}^m v_j \in \mathscr{P}(Y)$
Plans de transport	$\boldsymbol{\gamma} = (\gamma_{ij}) \in \mathcal{M}_{+}^{n \times m} (X \times Y) \text{ t.q. } \begin{cases} \pi_1 \# \sum_{k=1}^m \gamma_{ik} = \mu_i \\ \pi_2 \# \sum_{k=1}^n \gamma_{kj} = \nu_j \end{cases}$
$Primal:(\mathscr{P}_1)$	$\mathscr{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \sum_{i,j} \left\langle c_{ij} \mid \gamma_{ij} \right\rangle$
$Dual$: (\mathscr{D}_1)	$\sup \sum_{i=1}^{n} \langle \varphi_i \mu_i \rangle + \sum_{j=1}^{m} \langle \psi_j \nu_j \rangle \text{ t.q. } \varphi_i \oplus \psi_j \leq c_{ij}$
Conditions d'optimalité	$\varphi_i \oplus \psi_j = c_{ij} \gamma_{ij}$ -p.p.
TO Entropique	

	TO Multi-espèces
Distributions initiales	$\boldsymbol{\mu} = (\mu_i) \in \mathscr{M}^n_+(X)$ t.q. $\sum_{i=1}^n \mu_i \in \mathscr{P}(X)$
Distributions finales	$\boldsymbol{v} = (v_j) \in \mathscr{M}^m_+(Y)$ t.q. $\sum_{i=1}^m v_j \in \mathscr{P}(Y)$
Plans de transport	$\boldsymbol{\gamma} = (\gamma_{ij}) \in \mathcal{M}_{+}^{n \times m} (X \times Y) \text{ t.q. } \begin{cases} \pi_1 \# \sum_{k=1}^m \gamma_{ik} = \mu_i \\ \pi_2 \# \sum_{k=1}^n \gamma_{kj} = \nu_j \end{cases}$
$Primal:(\mathscr{P}_1)$	$\mathscr{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \inf \sum_{i,j} \left\langle c_{ij} \mid \gamma_{ij} \right\rangle$
$Dual:(\mathscr{D}_1)$	$\sup \sum_{i=1}^{n} \langle \varphi_i \mu_i \rangle + \sum_{j=1}^{m} \langle \psi_j \nu_j \rangle \text{ t.q. } \varphi_i \oplus \psi_j \leq c_{ij}$
Conditions d'optimalité	$\varphi_i \oplus \psi_j = c_{ij} \gamma_{ij}$ -p.p.
TO Entropique	inf $\sum_{i,j} \langle c_{ij} \gamma_{ij} \rangle - \varepsilon \text{Entropie}(\gamma_{ij})$

Quelques résultats

Existence d'une solution dans le problème primal (B.)

Si les coûts c_{ij} sont minorés et semi continus inférieurement. Il existe $\gamma = (\gamma_{ij})$ solution de (\mathscr{P}_1) .

Existence d'une solution dans le problème dual (B.)

Si X et Y sont deux espaces métriques compacts et que $c = (c_{ij})$ est continue, il existe $(\boldsymbol{\varphi}, \boldsymbol{\psi})$ solution de (\mathcal{D}_1) .

Dualité forte (B.)

Sous les conditions du théorème précédent, il n'y a aucun saut de dualité entre (\mathscr{P}_1) et (\mathscr{D}_1) , autrement dit :

 $(\mathscr{P}_1) = (\mathscr{D}_1).$

<ロト < 団ト < 臣ト < 臣ト < 臣ト < 臣 > 臣 の へ () 11/34

■ Transport Optimal scalaire : si (X, d) est un espace polonais, pour $p \in [1, \infty)$ et $c = d^p$, $\mathcal{T}^{1/p}$ est une distance sur $\mathcal{P}_p(X)$.

■ Transport Optimal scalaire : si (X, d) est un espace polonais, pour $p \in [1, \infty)$ et $c = d^p$, $\mathcal{T}^{1/p}$ est une distance sur $\mathcal{P}_p(X)$.

■ Cas multi-espèces : setting $c_{ij} = d_{ij}^p$, we make the following assumption $d_{ik}(x,z) \le d_{ij}(x,y) + d_{jk}(y,z)$ (MTI)

■ Transport Optimal scalaire : si (X, d) est un espace polonais, pour $p \in [1, \infty)$ et $c = d^p$, $\mathcal{T}^{1/p}$ est une distance sur $\mathcal{P}_p(X)$.

■ Cas multi-espèces : setting $c_{ij} = d_{ij}^{p}$, we make the following assumption $d_{ik}(x,z) \leq d_{ij}(x,y) + d_{jk}(y,z)$ (MTI)

Théorème (B.)

Étant donné n² fonctions (d_{ij}) définies sur $X \times X$ et à valeurs dans \mathbb{R}_+ telles que [1] $\forall (i,j) \in [\![1,n]\!]^2, d_{ij}$ est symétrique. [2] (MTI) est vérifiée pour tout $(i,j,k) \in [\![1,n]\!]^3$ et $(x,y,z) \in X^3$. [3] $\forall i \in [\![1,n]\!], \forall x \in X, d_{ii}(x,x) = 0$. [4] $\forall (i,j) \in [\![1,n]\!]^2, i \neq j, \forall (x,y) \in X \times X, d_{ij}(x,y) \neq 0$. Alors $\mathscr{K}(\boldsymbol{\mu}, \boldsymbol{v})^{1/p}$ est une distance sur $\mathscr{P}_p^n(X)$.

イロト イロト イヨト イヨト

Simulations numériques

Figure: Partitions de μ pour cinq $t \in [0,1]$ (p = 1.5, p' = 3)

1 Introduction au Transport Optimal

2 Transport Optimal multi-espèces B., Journal of Optimization Theory and Applications, 2020.

3 Un problème spatial d'échanges économiques à la Pareto B., G. Carlier, B. Nazaret, accepted for publication in Applied Mathematics and Optimization Journal, 2022.

4 Transport Optimal de matrices SDP et distance de Bures-Wasserstein *B., F-X. Vialard*

- X est un espace métrique compact et m une mesure de référence *i.e.* $\mu_i \ll m$ pour i = 1, ..., N.
- $\mu = (\mu_1, ..., \mu_N) \in L^1(X, m)^N$ sont les distributions initiales de biens dans la région X.

- X est un espace métrique compact et m une mesure de référence i.e. µ_i ≪ m pour i = 1,..., N.
- $\mu = (\mu_1, ..., \mu_N) \in L^1(X, m)^N$ sont les distributions initiales de biens dans la région X.
- $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_N) \in \mathcal{M}_+(X)^N$ sont les distributions finales de biens dans la région X.

Problème primal

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \left\{ \right.$$

t.q.
$$\mu_i(X) = \mathbf{v}_i(X) \Big\}.$$

10710712712712

- X est un espace métrique compact et m une mesure de référence *i.e.* $\mu_i \ll m$ pour i = 1, ..., N.
- $\mu = (\mu_1, ..., \mu_N) \in L^1(X, m)^N$ sont les distributions initiales de biens dans la région X.
- **v** = (v₁,...,v_N) ∈ M₊(X)^N sont les distributions finales de biens dans la région X.
 𝔐 = 𝔐 (v) est l'utilité moyenne (la somme des préférences de chaque agent se trouvant en x).

Problème primal

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \left\{ \mathscr{U}(\mathbf{v}) \qquad \text{t.q. } \mu_i(X) = \mathbf{v}_i(X) \right\}$$

- X est un espace métrique compact et m une mesure de référence *i.e.* $\mu_i \ll m$ pour i = 1, ..., N.
- $\mu = (\mu_1, ..., \mu_N) \in L^1(X, m)^N$ sont les distributions initiales de biens dans la région X.
- v = (v₁,...,v_N) ∈ M₊(X)^N sont les distributions finales de biens dans la région X.
 𝔄 = 𝔄 (v) est l'utilité moyenne (la somme des préférences de chaque agent se trouvant en x).
 𝔅 (u, x) = N₁ 𝔅 (u, x) est la coût de transport entre u et x.

Problème primal

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \left\{ \mathscr{U}(\mathbf{v}) - \mathscr{T}(\boldsymbol{\mu}, \boldsymbol{v}) \text{ t.q. } \boldsymbol{\mu}_i(\boldsymbol{X}) = \boldsymbol{v}_i(\boldsymbol{X}) \right\}.$$

$$U: (x, \beta) \in X \times \mathbb{R}^N_+ \mapsto U(x, \beta) \in \mathbb{R} \cup \{-\infty\}$$
 est la préférence de l'agent se trouvant en x .

■ $\forall i = 1,...,N, c_i$ est continu, positif et $c_i(x,x) = 0$ pour tout $x \in X$. ■ m- $p.p.x \in X, U$ est semi continue supérieurement, concave et monotone. ■ $(x,\beta) \mapsto U(x,\beta)$ est sous-linéaire en β uniformément par rapport $x \in X$.

Exemple : pour $a_1, \dots, a_N > 0$ tels que $\sum_{i=1}^N a_i < 1$ et p = p(x) > 0 un poids,

$$U(x,\beta(x))=p(x)\prod_{i=1}^N\beta_i(x)^{a_i}.$$

Un exemple avec un seul bien

Échanges économiques entre 9 villes : 1 bien

イロト イロト イヨト イヨト 1 16/34

Existence d'un maximiseur

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \Big\{ \mathscr{U}(\mathbf{v}) - \mathscr{T}(\mu, \mathbf{v}) \text{ t.q. } \mu_i(X) = \mathbf{v}_i(X) \Big\}.$$

Proposition (B., Carlier, Nazaret, 2021)

Le problème de maximisation (\mathscr{P}_2) admet au moins une solution dans $L^1(X,m)$.

Existence d'un maximiseur

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \left\{ \mathscr{U}(\mathbf{v}) - \mathscr{T}(\mu, \mathbf{v}) \text{ t.q. } \mu_i(X) = \mathbf{v}_i(X) \right\}.$$

Proposition (B., Carlier, Nazaret, 2021)

Le problème de maximisation (\mathscr{P}_2) admet au moins une solution dans $L^1(X,m)$.

Preuve : N = 1, en utilisant la méthode directe du calcul des variations, partant d'une suite maximisante $v^n = \beta^n \cdot m$, on en extrait une sous-suite (toujours notée v^n) qui admet la limite suivante

$$v^n \stackrel{*}{\rightharpoonup} v$$

<ロト < 回 ト < 目 ト < 目 ト ミ の < () 17/34

Existence d'un maximiseur

$$(\mathscr{P}_2) = \sup_{\mathbf{v}} \left\{ \mathscr{U}(\mathbf{v}) - \mathscr{T}(\mu, \mathbf{v}) \text{ t.q. } \mu_i(X) = \mathbf{v}_i(X) \right\}.$$

Proposition (B., Carlier, Nazaret, 2021)

Le problème de maximisation (\mathscr{P}_2) admet au moins une solution dans $L^1(X,m)$.

Preuve : N = 1, en utilisant la méthode directe du calcul des variations, partant d'une suite maximisante $v^n = \beta^n \cdot m$, on en extrait une sous-suite (toujours notée v^n) qui admet la limite suivante

$$v^n \stackrel{*}{\rightharpoonup} v$$

 \land **v** peut ne pas appartenir à $L^1(m)$ \land

Existence of a minimizer

Pour venir à bout de cette difficulté, partant de v, on construit un autre candidat admissible \tilde{v} qui fait augmenter \mathscr{U} et diminuer $\mathscr{T}(\mu,.)$. Soit $\beta^a \in L^1$ et $v^s \in \mathscr{M}_+(X)$ tels que $v^s \perp m$ et

$$\mathbf{v} = \beta^a \cdot m + v^s$$
 (Radon-Nikodym)

Soit $\gamma \in \Pi(\mu, \nu)$ optimal entre μ et ν . On le décompose en

$$\gamma = \underbrace{\gamma_{|X \times A}}_{\gamma^a} + \underbrace{\gamma_{|X \times A^c}}_{\gamma^s}$$

où A vérifie $v^{s}(A) = m(A^{c}) = 0$. En posant

$$\widetilde{\boldsymbol{\gamma}} = \gamma^a + (\mathsf{Id}, \mathsf{Id}) \# [\mathsf{proj}_1 \# \gamma^s] \cdot m,$$

la seconde marginale de $\tilde{\gamma}$ est solution de (\mathscr{P}) si $c \ge 0$ et c(x,x) = 0 pour tout $x \in X$.

Duality

Le problème (\mathscr{P}_2) apparait naturellement comme étant le problème dual d'un problème de minimisation convexe :

$$(\mathscr{D}_2) = \inf \left\{ \mathscr{K}(\varphi) + \mathscr{V}(\varphi) \text{ t.q. } \varphi \in C(X, \mathbb{R})^N \right\}$$

оù

$$\mathcal{K}(\varphi) = -\sum_{i=1}^{N} \int_{X} \varphi_{i}^{c_{i}} d\mu_{i}, \text{ and } \mathcal{V}(\varphi) = \int_{X} V(x, \varphi_{1}(x), \dots, \varphi_{N}(x)) dm(x)$$

et $V(x, \varphi) = \sup \{ U(x, \beta) - \sum_{i=1}^{N} \beta_{i} \varphi_{i} : \beta \in \mathbb{R}^{N}_{+} \}.$

Théorème (Dualité (B., Carlier, Nazaret))

Il n'y a aucun saut de dualité entre (\mathscr{P}_2) et (\mathscr{D}_2), i.e.

$$(\mathscr{D}_2) = (\mathscr{P}_2).$$

Problème entropique et algorithme

 \blacksquare X est fini et *m* est la mesure de comptage sur X.

$$(\mathscr{D}_{2}) = \inf_{\varphi \in \mathbb{R}^{X \times N}} \sum_{y \in X} V(y, \varphi(y)) + \sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \underbrace{\max_{y \in X} \{\varphi_{i}(y) - c_{i}(x, y)\}}_{y \in X} }_{(\mathscr{D}_{\varepsilon}) = \inf_{\varphi \in \mathbb{R}^{X \times N}} \sum_{y \in X} V(y, \varphi(y)) + \varepsilon \sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \log\left(\sum_{y \in X} e^{\frac{\varphi_{i}(y) - c_{i}(x, y)}{\varepsilon}}\right).$$

 $(\mathscr{D}_{arepsilon})$ peut être réécrite en considérant la formulation convexe suivante

$$(\widetilde{\mathscr{D}}_{\varepsilon}) = \inf_{\varphi,\psi} \Phi_{\varepsilon}(\varphi,\psi)$$

où
$$\Phi_{\varepsilon}(\varphi, \psi) = \sum_{y \in X} V(y, \varphi(y)) - \sum_{i=1}^{N} \sum_{x \in X} \alpha_i(x) \psi_i(x) + \varepsilon \sum_{i=1}^{N} \sum_{(x,y) \in X^2} e^{\frac{\psi_i(x) + \varphi_i(y) - c_i(x,y)}{\varepsilon}}$$

dont la solution est calculée par une descente de gradient coordonnée par coordonnée.

Interprétation économique

Soient (β, φ) optimaux dans (\mathscr{P}_2) et (\mathscr{D}_2) . Alors on a un équilibre économique pour la dotation initiale $\boldsymbol{w} = \langle \boldsymbol{\varphi}^c | \boldsymbol{\alpha} \rangle + \langle \boldsymbol{\varphi} | \boldsymbol{\beta} \rangle (= \mathscr{T}_c(\alpha, \beta))$ dans le sens où:

Les vendeurs en x maximisent leurs profits en exportant leurs biens $\alpha(x)$:

profit unitaire_i(x) =
$$\max_{y} \varphi_i(y) - c_i(x, y) \ (= -\varphi_i^{c_i}(x))$$

profits totaux(x) = $\langle \text{profit unitaire}(x) | \alpha(x) \rangle$

Les acheteurs en y ont une dotation initiale w(y) et achètent β_i(y) de la manière suivante :

$$\beta_{i}(y) = \underset{\beta}{\operatorname{argmax}} \left\{ \boldsymbol{U}(\boldsymbol{y}, \boldsymbol{\beta}) \text{ t.q. } \langle \varphi \mid \beta \rangle \leq \underbrace{\langle -\varphi^{c}(\boldsymbol{y}) \mid \alpha(\boldsymbol{y}) \rangle}_{\text{revenu total}} + w(\boldsymbol{y}) \right\}$$

■ Libre marché : il existe un plan de transport optimal pour toutes les distributions finales.

Simulations

Échanges économiques entre 9 villes : 2 biens

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ Prendre comme coût de transport des biens un coût multi-espèces :

$$\sum_{i=1}^{N} \mathscr{T}_{c_i}(\mu_i, \nu_i) \longleftarrow \mathscr{K}(\boldsymbol{\mu}, \boldsymbol{\nu}).$$

- Retirer la contrainte de préservation de la masse et intégrer un Transport Optimal non équilibré (unbalanced).
- **D**ans le cas où l'espace X est un compact de \mathbb{R}^d , proposer un modèle dynamique.

1 Introduction au Transport Optimal

2 Transport Optimal multi-espèces B., Journal of Optimization Theory and Applications, 2020.

3 Un problème spatial d'échanges économiques à la Pareto B., G. Carlier, B. Nazaret, accepted for publication in Applied Mathematics and Optimization Journal, 2022.

4 Transport Optimal de matrices SDP et distance de Bures-Wasserstein *B., F-X. Vialard*

$$d_{BW}^{2}(S_{0}, S_{1}) = \operatorname{Tr} S_{0} + \operatorname{Tr} S_{1} - 2 \operatorname{Tr} \left(S_{0}^{1/2} S_{1} S_{0}^{1/2} \right)^{1/2}$$

Bures-Wasserstein sur \mathcal{S}_+

$$d_{BW}^{2}(S_{0}, S_{1}) = \operatorname{Tr} S_{0} + \operatorname{Tr} S_{1} - 2\operatorname{Tr} \left(S_{0}^{1/2}S_{1}S_{0}^{1/2}\right)^{1/2}$$
Bures-Wasserstein sur S_{+}
Croodstrifters
Formulation variationnelle
non convexe de d_{BW}

Formulation variationnelle (non) convexe

Monsaingeon & Vorotnikov (2021) ont proposé le modèle suivant : étant donné S_0 , $S_1 \in S_+$, ils considèrent la formulation *non convexe*

 $\inf\left\{\frac{1}{2}\int_{0}^{1} \operatorname{Tr}\left(U_{t}^{*}S_{t}U_{t}\right) \mathrm{d}t \text{ t.q. } \partial_{t}S_{t} = (S_{t}U_{t})^{\mathrm{sym}}, S_{t=0} = S_{0} \text{ et } S_{t=1} = S_{1}\right\}.$

■ Changement de variables : $(S, U) \leftarrow (S, R = SU)$ et ainsi le problème ci-dessus se transforme en le problème *convexe* suivant

$$\inf\left\{\int_{0}^{1} A(S_{t}, R_{t}) dt \text{ t.q. } \partial_{t} S_{t} = R_{t}^{\text{sym}}, S_{t=0} = S_{0} \text{ and } S_{t=1} = S_{1}\right\}$$
(P₃)

оù

$$A(S,R) = \begin{cases} \frac{1}{2} \operatorname{Tr}(R^*S^*R) & \text{if } S \in S_+ \text{ and } \operatorname{im}(R) \subset \operatorname{im}(S) \\ +\infty & \text{sinon.} \end{cases}$$

イロト イロト イヨト イヨト 三日

$$\sup_{Q \in C^1([0,1],\mathscr{S})} \left\{ \operatorname{Tr}(S_1 Q_1) - \operatorname{Tr}(S_0 Q_0) \text{ tel que } \partial_t Q + \frac{1}{2}Q^2 \leq 0 \right\}$$
 (D₃)

<ロ><一><一</td>< 目>< 目>< 目>< 日</td>< 日</td>27/34

Dualité

$$(P_3) = \sup_{Q \in C^1([0,1],\mathscr{S})} \left\{ \operatorname{Tr}(S_1 Q_1) - \operatorname{Tr}(S_0 Q_0) \text{ tel que } \partial_t Q + \frac{1}{2} Q^2 \leq 0 \right\}$$
(D₃)

<ロ><一><一</td>< 目>< 目>< 目>< 日</td>< 日</td>27/34

Dualité

$$(P_3) = \sup_{Q \in C^1([0,1],\mathscr{S})} \left\{ \operatorname{Tr}(S_1 Q_1) - \operatorname{Tr}(S_0 Q_0) \text{ tel que } \partial_t Q + \frac{1}{2}Q^2 \le 0 \right\}$$
(D₃)

Conditions d'optimalité : $(S, R, Q) \in C^1([0, 1], S \times \mathbb{R}^{n \times n} \times S)$ sont optimaux dans les problèmes (P_3) et (D_3) si et seulement si

 $\begin{cases} S_{t=0} = S_0, S_{t=1} = S_1 \\\\ \partial_t S = (SQ)^{\text{sym}} \\\\ \partial_t Q + \frac{1}{2}Q^2 \leq 0 \\\\ \operatorname{Tr} S \left(\partial_t Q + \frac{1}{2}Q^2 \right) = 0 \end{cases}$

Rang un : pour deux matrices SDP de rang 1, notées $S_0 = s_0 s_0^*$ et $S_1 = s_1 s_1^*$, une géodésique pour la distance de Bures-Wasserstein est donnée par

Matrices de rangs égaux

A toute $S \in S_{++}$ est associée une mesure gaussienne centrée de variance S :

$$\mathcal{S}_{++} \ni S \longleftrightarrow \mu_S \in \mathscr{P}(\mathbb{R}^n)$$

et il y a une isométrie entre (S_{++}, d_{BW}) et (Gaussiennes, \mathscr{T}_2) [McCann 1996, Takatsu 2008].

■ La géodésique entre μ_{S_0} et μ_{S_1} est donnée par $\mu_t = [(1-t) \operatorname{Id} + t\Lambda] \# \mu_{S_0}$ où

$$\Lambda \in \mathscr{S}_{++} \text{ et } \Lambda S_0 \Lambda = S_1.$$
 (Éq. de Riccati)

Matrices de rangs égaux

A toute $S \in S_{++}$ est associée une mesure gaussienne centrée de variance S :

$$\mathcal{S}_{++} \ni S \longleftrightarrow \mu_S \in \mathscr{P}(\mathbb{R}^n)$$

et il y a une isométrie entre (S_{++}, d_{BW}) et (Gaussiennes, \mathscr{T}_2) [McCann 1996, Takatsu 2008].

■ La géodésique entre μ_{S_0} et μ_{S_1} est donnée par $\mu_t = [(1-t) \operatorname{Id} + t\Lambda] \# \mu_{S_0}$ où

$$\Lambda \in \mathscr{S}_{++} \text{ et } \Lambda S_0 \Lambda = S_1.$$
 (Éq. de Riccati)

Si on suppose que ker(S₀) ⊂ ker(S₁), l'équation de Riccati admet une solution SDP [Fujii, 2018].

Matrices de rangs égaux

A toute $S \in S_{++}$ est associée une mesure gaussienne centrée de variance S :

$$\mathcal{S}_{++} \ni S \longleftrightarrow \mu_S \in \mathscr{P}(\mathbb{R}^n)$$

et il y a une isométrie entre (S_{++}, d_{BW}) et (Gaussiennes, \mathscr{T}_2) [McCann 1996, Takatsu 2008].

■ La géodésique entre μ_{S_0} et μ_{S_1} est donnée par $\mu_t = [(1-t) \operatorname{Id} + t\Lambda] \# \mu_{S_0}$ où

$$\Lambda \in \mathscr{S}_{++} \text{ et } \Lambda S_0 \Lambda = S_1.$$
 (Éq. de Riccati)

- Si on suppose que ker(S₀) ⊂ ker(S₁), l'équation de Riccati admet une solution SDP [Fujii, 2018].
- (B., Vialard) Si de plus, rank(S₀) = rank(S₁) = d, à toute solution SDP de l'équation de Riccati est associée une géodésique entre S₀ et S₁ donnée par

 $S_t = \left[(1-t) \operatorname{Id} + t\Lambda \right] S_0 \left[(1-t) \operatorname{Id} + t\Lambda \right]^*$

TO non équilibré et distance de Bures-Wasserstein

Transport Optimal non équilibré : étant donné ρ_0 et ρ_1 deux mesures finies sur Ω un domaine de \mathbb{R}^p , on s'intéresse à la minimisation de la fonctionnelle

Action
$$(\rho, \omega, \zeta) = \frac{1}{2} \int_0^1 \left(\int_\Omega \frac{|\omega_t(x)|^2}{\rho_t(x)} dx + \int_\Omega \frac{|\zeta_t(x)|^2}{\rho_t(x)} dx \right) dt.$$

sous la contrainte de l'équation de continuité avec terme source suivante

$$\partial_t \rho + \operatorname{div}_{\times} \omega = \zeta \quad \text{et} \quad \rho_{t=0} = \rho_0, \, \rho_{t=1} = \rho_1.$$

De \mathbb{R}_+ à \mathcal{S}_+ : formellement on remplace les trois variables

$$\rho \leftarrow \mathscr{S}, \omega \leftarrow \mathscr{M}, \zeta \leftarrow \mathscr{R},$$

$$\mathscr{A}(\mathscr{S},\mathscr{M},\mathscr{R}) = \frac{1}{2} \int_0^1 \left(\int_\Omega \mathsf{Tr}\left(\mathscr{M}_t^*(x)\mathscr{S}_t^{\dagger}(x)\mathscr{M}_t(x)\right) + \mathsf{Tr}\left(\mathscr{R}_t^*(x)\mathscr{S}_t^{\dagger}(x)\mathscr{R}_t(x)\right) dx \right) dt$$

$$\partial_t \mathscr{S} + \operatorname{div}_{\mathcal{X}} \mathscr{M}^{\operatorname{sym}} = \mathscr{R}^{\operatorname{sym}}$$
 et $\mathscr{S}_{t=0} = \mathscr{S}_0, \, \mathscr{S}_{t=1} = \mathscr{S}_1.$

30 / 34

TO non équilibré et distance de Bures-Wasserstein

Transport Optimal non équilibré : étant donné ρ_0 et ρ_1 deux mesures finies sur Ω un domaine de \mathbb{R}^p , on s'intéresse à la minimisation de la fonctionnelle

Action
$$(\rho, \omega, \zeta) = \frac{1}{2} \int_0^1 \left(\int_\Omega \frac{|\omega_t(x)|^2}{\rho_t(x)} dx + \int_\Omega \frac{|\zeta_t(x)|^2}{\rho_t(x)} dx \right) dt.$$

sous la contrainte de l'équation de continuité avec terme source suivante

$$\partial_t \rho + \operatorname{div}_{\times} \omega = \zeta \quad \text{et} \quad \rho_{t=0} = \rho_0, \ \rho_{t=1} = \rho_1.$$

De \mathbb{R}_+ à \mathcal{S}_+ : et si Ω est réduit à un singleton (ou s'il n'y a aucun mouvement) :

$$\mathscr{A}(\mathscr{S},\mathscr{M},\mathscr{R}) = \frac{1}{2} \int_0^1 \left(\int_{\Omega} \operatorname{Tr}\left(\mathscr{M}_t^*(x) \mathscr{S}_t^{\dagger}(x) \mathscr{M}_t(x) \right) + \operatorname{Tr}\left(\mathscr{R}_t^*(x) \mathscr{S}_t^{\dagger}(x) \mathscr{R}_t(x) \right) dx \right) dx$$

$$\partial_t \mathscr{S} + \operatorname{div}_{\mathcal{X}} \mathscr{M}^{\operatorname{sym}} = \mathscr{R}^{\operatorname{sym}} \text{ et } \mathscr{S}_{t=0} = \mathscr{S}_0, \ \mathscr{S}_{t=1} = \mathscr{S}_1.$$

31/34

- Étendre à l'ensemble des matrices SDP les résultats exploitant l'équation de Riccati.
- Étudier numériquement le problème dynamique de transport de matrices SDP.
- Existe-t-il une formulation *statique* (à la Kantorovich) du problème dynamique ?

Merci pour votre attention.