

A few words about Optimal Transport (OT) and its generalizations

Xavier Bacon

Exposé à SAFRAN Paris-Saclay

7/12/2023

Static OT

- Formulation and examples
- Numerical aspects
- 2 Generalizations and applications
 - Multi-species OT
 - A spatial exchange economy problem
 - Dynamical, unbalanced and matrix-valued OT

(a) G. Monge

(b) L. Kantorovich

Table of Contents

Generalizations and applications

Static OT

• Formulation and examples

Numerical aspects

2) Generalizations and applications

- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?

$$X = \{x_1, x_2, x_3\}, \ Y = \{y_1, y_2, y_3, y_4\}$$

 μ and ν two weighted point clouds

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?

 $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$ $\mu \text{ and } \nu \text{ two weighted point clouds}$ c = c(x, y) transport cost

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?

$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$

 $\pmb{\mu}$ and ν two weighted point clouds

c = c(x, y) transport cost

transference plan

 $\operatorname{Cost}_c(\gamma) = \langle c | \gamma \rangle$

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?

 $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$

 μ and ν two weighted point clouds

c = c(x, y) transport cost

$$\gamma = \begin{array}{cccc} 0.2 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0.2 & 0.1 \\ 0 & 0.2 & 0.1 & 0.1 \end{array}$$

ransference plan

 $\operatorname{Cost}_{c}(\gamma) = \langle c | \gamma \rangle$

What is Optimal Transport? 1/2

Among all transference, which is the best?

 $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$

 μ and ν two weighted point clouds

c = c(x, y) transport cost

$$\gamma = \begin{array}{cccc} 0.2 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0.2 & 0.1 \\ 0 & 0.2 & 0.1 & 0.1 \end{array}$$

 $\operatorname{Cost}_{c}(\gamma) = \langle c | \gamma \rangle$

transference plan

What is Optimal Transport? 2/2

µ ∈ 𝒫(X), ν ∈ 𝒫(Y) are respectively the source and the target distributions.
 c = c(x, y) is the transport cost.

The (Static) Optimal Transport problem is defined as follows

$$\mathsf{OT}_{c}(\mu,\nu) = \min\left\{\int_{X\times Y} c(x,y) \, d\gamma(x,y) \, \text{s.t.} \, \gamma \in \Pi(\mu,\nu)\right\},\$$

where $\Pi(\mu, \nu)$ denotes the set of all $\gamma \in \mathscr{P}(X \times Y)$ having μ and ν as marginals, called transference plans.

$$\mathsf{OT}_{c}(\mu,\nu) = \mathsf{OT}_{c}(\alpha,\beta) = \min\left\{ \langle c | \gamma \rangle \text{ s.t. } \gamma \cdot \mathbb{1} = a, \gamma^{T} \cdot \mathbb{1} = b \right\}.$$

Wasserstein distance

p-Wasserstein distance

If
$$(X, d)$$
 is a metric space and $c = d^p$, then

OT_c is a distance on $\mathscr{P}(X)$ if 0 , $OT_c^{1/p} is a distance on <math>\mathscr{P}(X)$ if p > 1.

■ OT_c metrizes the weak-* convergence of probabilities (convergence in Law).
 ■ If p = 2, OT₂ is a geodesical distance: any pair of probabilities µ and v can be connected by a continuous path of length OT₂(µ, v).

Solving OT problem

Generalizations and applications

HOW DO WE SOLVE OT_c ?

Solving OT problem

Generalizations and applications

HOW DO WE SOLVE OT_c ?

**** It depends on the cost *c*.

Solving OT problem

HOW DO WE SOLVE OT_c ?

- $\mathbf{\mathfrak{P}}$ It depends on the cost c.
- △ Computing $OT_c(\mu, \nu)$ means solving an (linear) optimization problem, except for few cases...

1 dimensional OT

$$\blacksquare X = Y = \mathbb{R}, \ c(x, y) = |x - y|^p, \ p \ge 1 \text{ (convex case)}.$$

Figure: Histogram equalization

1 dimensional Wasserstein

Denoting F^{-1} the (generalized) quantile function

$$W_{p}(\mu, \nu)^{p} = \left\| F_{\mu}^{-1} - F_{\nu}^{-1} \right\|_{L^{p}},$$

that is (\mathbb{R}, W_p) is isometric to $L^p(\mathbb{R})$ through the map $\mu \mapsto F_{\mu}^{-1}$.

\bigcirc Computational aspect : $O(n \log n + m \log m)$

Gaussian OT

Gaussian quadratic OT $X = Y = \mathbb{R}^{d}, \ c(x, y) = \frac{1}{2}|x - y|^{2},$ $\mu \sim \mathcal{N}(m_{\mu}, \Sigma_{\mu}), \ v \sim \mathcal{N}(m_{\nu}, \Sigma_{\nu}).$ $OT_{2}(\mu, \nu)^{2} = |m_{\mu} - m_{\nu}|^{2} + \text{Bures}(\Sigma_{\mu}, \Sigma_{\nu})^{2}$

OT₂ between Gaussian densities is the L² distance between parameters.

⁶ Bures
$$(\Sigma_{\mu}, \Sigma_{\nu})^2 = \operatorname{trace}\left[\Sigma_{\mu} + \Sigma_{\nu} 2\left(\Sigma_{\mu}^{1/2} \Sigma_{\nu} \Sigma_{\mu}^{1/2}\right)^{1/2}\right].$$

Table of Contents

- Formulation and examples
- Numerical aspects

2 Generalizations and applications

- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Computational aspects : motivations

•
$$X = \{x_1, \dots, x_n\}, Y = \{y_1, \dots, y_m\}$$
 and the cost $c = c(x, y)$ is arbitrary.
• $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}, \nu = \sum_{j=1}^m \beta_j \delta_{y_j}$ (weighted point clouds).

As a linear problem, OT_c can be solved using Hungarian algorithm but...

Computing OT_c using Hungarian algorithm

 $\underline{\wedge} O((n+m)nm\log(n+m))$ $\underline{\wedge}$

Computational aspects : motivations

•
$$X = \{x_1, \dots, x_n\}, Y = \{y_1, \dots, y_m\}$$
 and the cost $c = c(x, y)$ is arbitrary.
• $\mu = \sum_{i=1}^n \alpha_i \delta_{x_i}, \nu = \sum_{j=1}^m \beta_j \delta_{y_j}$ (weighted point clouds).

As a linear problem, OT_c can be solved using Hungarian algorithm but...

Computing OT_c using Hungarian algorithm

 $\triangle O((n+m)nm\log(n+m))$

WE MUST REGULARIZE

Regularized OT

X, Y finite and $\alpha \in \mathbb{R}^X, \beta \in \mathbb{R}^Y$ denotes the source and the target distributions. We introduce the discrete entropy of γ as

$$Entropy(\gamma) = -\sum_{i,j} \gamma_{ij} \left[\log(\gamma_{ij}) - 1 \right]$$

Entropic OT (Cuturi 2013)

For a fixed ε 0, the regularized OT problem is given by

$$OT^{\varepsilon}(\alpha,\beta) = \min \left\{ \langle c | \gamma \rangle - \varepsilon \, Entropy(\gamma) \, s.t. \, \gamma \in \Pi(\alpha,\beta) \right\},\$$

whose unique solution converges to the solution of $\mathscr{T}(\alpha,\beta)$ with maximal entropy.

? The original linear optimization problem ($\varepsilon = 0$) is replaced by a strongly convex problem.

Strategy

In instead of solving OT^{ε} , we solve the **dual problem of OT^{\varepsilon}**. Once solved, we construct the solution to our initial problem, using the optimal *primal-dual* conditions:

A short digression about duality 1/2

An external provider (say Alice) offers to transport the coal with her own trucks according to the following contract.

Alice chooses the price $\varphi(x)$ for loading in x. Alice chooses the price $\psi(y)$ for unloading in y. Alice assures me that it will cost less than doing it myself

 $\varphi(x) + \psi(y) \leq c(x, y).$

Alice charges me $\langle \varphi | \mu \rangle + \langle \psi | \nu \rangle$.

 $\mathsf{Dual}(\mu, \nu) = \max\left\{ \langle \varphi \, | \, \mu \rangle + \langle \psi \, | \, \nu \rangle : \varphi(x) + \psi(y) \leq c(x, y) \right\}.$

(Alice problem)

A short digression about duality 2/2

$$\mathsf{Dual}(\mu, \nu) = \max \left\{ \langle \varphi \, | \, \mu \rangle + \langle \psi \, | \, \nu \rangle : \varphi(x) + \psi(y) \leq c(x, y) \right\}$$

What is the link between $Dual(\mu, \nu)$ and $OT(\mu, \nu)$?

Theorem (strong duality)

 $Dual(\mu, v) = OT(\mu, v)$ and any solution of $Dual(\mu, v)$ leads to a solution of $OT(\mu, v)$.

 $\mathcal{OT}(\mu, \nu)$ is a optimization problem on $\mathbb{R}^{n \times m}$ while $\text{Dual}(\mu, \nu)$ is on \mathbb{R}^{n+m} .

Strategy

Generalizations and applications

In instead of solving OT^{ε} , we solve the **dual problem of OT^{\varepsilon}**. Once solved, we construct the solution to our initial problem, using the optimal *primal-dual* conditions:

Solving Dual^{ε}(α, β) using **Sinkhorn's algorithm** (Cuturi, 2013) : setting $u^{\varepsilon} = \exp(\varphi^{\varepsilon}/\varepsilon)$ and $v^{\varepsilon} = \exp(\psi^{\varepsilon}/\varepsilon)$, starting with $u^{0} = \mathbb{1}_{X}, v^{0} = \mathbb{1}_{Y}$, we compute alternatively

$$u^{k+1} = \frac{\alpha}{K \cdot v^k}$$
 and $v^{k+1} = \frac{\beta}{K^T \cdot u^{k+1}}$

whose convergence is linear.

Table of Contents

Generalizations and applications

Static OT

- Formulation and examples
- Numerical aspects

2 Generalizations and applications

- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

From scalar OT to multi-species OT

Optimal Transport : 1 specie

From scalar OT to multi-species OT

Optimal Transport : 2 species

 $\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$

Static OT

Generalizations and applications

From scalar OT to multi-species OT

Optimal Transport : 2 species

$$\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$$

Four costs c_{11} , c_{12} , c_{21} , c_{22} .

Static OT

Generalizations and applications

From scalar OT to multi-species OT

Optimal Transport : 2 species

$$\blacksquare \ \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$$

- Four costs c_{11} , c_{12} , c_{21} , c_{22} .
- ...And as much transference plans γ_{11} , γ_{12} , γ_{21} , γ_{22} .

Distance on \mathbb{R}^n_+ measures

■ Classical OT: if (X, d) is a Polish space, for $p \in [1, \infty)$ and $c = d^p$, $\mathcal{T}^{1/p}$ is a distance on $\mathcal{P}_p(X)$.

■ Multi-species OT: setting $c_{ij} = d_{ij}^p$, we make the following assumption $d_{ik}(x,z) \le d_{ij}(x,y) + d_{jk}(y,z)$ (Mixed Triangles Inequalities)

Theorem (B. 2020)

Given n^2 functions (d_{ij}) defined on $X \times X$ and \mathbb{R}_+ -valued such that [1] $\forall (i,j) \in [[1,n]]^2, d_{ij}$ is symmetric. [2] (MTI) is satisfied for all $(i,j,k) \in [[1,n]]^3$ et $(x,y,z) \in X^3$. [3] $\forall i \in [[1,n]], \forall x \in X, d_{ii}(x,x) = 0$. [4] $\forall (i,j) \in [[1,n]]^2, i \neq j, \forall (x,y) \in X \times X, d_{ij}(x,y) \neq 0$. Then MultiOT is a distance between multi-valued probabilities.

Table of Contents

Generalizations and applications

Static OT

- Formulation and examples
- Numerical aspects

2 Generalizations and applications

- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Primal problem

 \blacksquare X is a compact metric space.

Primal problem $(\mathscr{P}) = \max \left\{ \right\}.$

 \blacksquare X is a compact metric space.

■ $\mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$ are the source distributions of goods in region X.

 \blacksquare X is a compact metric space.

■ $\mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$ are the source distributions of goods in region X. ■ $\nu = (\nu_1, ..., \nu_N) \in \mathcal{M}_+(X)^N$ are the target distributions of goods in region X.

 \blacksquare X is a compact metric space.

µ = (µ₁,...,µ_N) ∈ M₊(X)^N are the source distributions of goods in region X.
 ν = (v₁,...,v_N) ∈ M₊(X)^N are the target distributions of goods in region X.
 𝔐 = 𝔐(ν) is the average utility.

Primal problem

$$(\mathscr{P}) = \max_{\boldsymbol{\nu}} \left\{ \mathscr{U}(\boldsymbol{\nu}) \qquad \text{s.t. } \mu_i(X) = \boldsymbol{\nu}_i(X) \right\}$$

 \blacksquare X is a compact metric space.

µ = (µ₁,...,µ_N) ∈ M₊(X)^N are the source distributions of goods in region X.
 v = (v₁,...,v_N) ∈ M₊(X)^N are the target distributions of goods in region X.
 𝔐 = 𝔐(ν) is the average utility.

• $\mathscr{T}(\mu, \nu) = \sum_{i=1}^{N} \operatorname{OT}_{c_i}(\mu_i, \nu_i)$ is the transport cost between μ and ν .

Primal problem

$$(\mathscr{P}) = \max_{\boldsymbol{\nu}} \Big\{ \mathscr{U}(\boldsymbol{\nu}) - \mathscr{T}(\boldsymbol{\mu}, \boldsymbol{\nu}) \text{ s.t. } \boldsymbol{\mu}_i(\boldsymbol{X}) = \boldsymbol{\nu}_i(\boldsymbol{X}) \Big\}.$$

B 2.3 R 3

An example

Source distribution

4 🖛 S

Generalizations and applications

Economic interpretation

Let (β, φ) be optimal in (\mathscr{P}) and (\mathscr{D}) . Then we have an **equilibrium** for the initial monetary endowment $\boldsymbol{w} \langle \boldsymbol{\varphi}^{\boldsymbol{c}} | \boldsymbol{\alpha} \rangle \langle \boldsymbol{\varphi} | \boldsymbol{\beta} \rangle (= \mathscr{T}_{\boldsymbol{c}}(\boldsymbol{\alpha}, \beta))$ in the sense that:

Sellers at x maximize their profits by exporting their goods $\alpha(x)$:

$$\text{profits}_{i}(x) = \max_{y} \varphi_{i}(y) - c_{i}(x, y) \ \left(= -\varphi_{i}^{c_{i}}(x)\right)$$
$$\text{total profits}(x) = \langle \text{profits}(x) | \alpha(x) \rangle$$

Consumers in y have an initial endowment w(y) and buy $\beta_i(y)$ in such a way:

$$\beta_{i}(y) = \operatorname{argmax}_{\beta} \left\{ \boldsymbol{U}(\boldsymbol{y},\beta) \text{ s.t. } \langle \varphi | \beta \rangle \leq \underbrace{\langle -\varphi^{c}(y) | \alpha(y) \rangle + w(y)}_{\text{total revenue}} \right\}$$

Markets are clear : it exists an optimal transport plan for all target endowments.

Table of Contents

Generalizations and applications

Static OT

- Formulation and examples
- Numerical aspects

2 Generalizations and applications

- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Dynamical formulation of OT 1/2

- $\blacksquare X = Y = \text{ a domain of } \mathbb{R}^d, \ (\mu, \nu) \in \mathscr{P}(X)^2 \text{ and } c(x, y) = \frac{1}{2}|x y|^2.$
- **?** We introduce the **time variable** t and consider all the kinematics $\rho = \rho_t$ which linked μ (initial time, t = 0) to ν (final time, t = 1).

Dynamical formulation of OT 1/2

- X = Y = a domain of \mathbb{R}^d , $(\mu, \nu) \in \mathscr{P}(X)^2$ and $c(x, y) = \frac{1}{2}|x y|^2$.
- **?** We introduce the **time variable** t and consider all the kinematics $\rho = \rho_t$ which linked μ (initial time, t = 0) to ν (final time, t = 1).

Constraints = conservation of mass Action(ρ ,v) = $\frac{1}{2} \int_0^1 \int_X |v_t(x)|^2 \rho_t(x) dx dt$

Dynamical formulation of OT 1/2

- X = Y = a domain of \mathbb{R}^d , $(\mu, \nu) \in \mathscr{P}(X)^2$ and $c(x, y) = \frac{1}{2}|x y|^2$.
- \Im We introduce the **time variable** t and consider all the kinematics $\rho = \rho_t$ which linked μ (initial time, t = 0) to ν (final time, t = 1).

Constraints = conservation of mass Action(ρ ,v) = $\frac{1}{2} \int_0^1 \int_X |v_t(x)|^2 \rho_t(x) dx dt$

$$\mathsf{DynamicOT}(\mu, \nu) = \min_{\rho:[0,1] \to P(X)} \{ \mathsf{Action}(\rho, \nu) \text{ s.t. } \partial_t \rho + \mathsf{div}_{\times} \rho \nu = 0 \text{ and } \rho_0 = \mu, \rho_1 = \nu \}$$

Dynamic formulation of OT 2/2

Is there a link between DynamicOT(μ , ν) and OT₂(μ , ν) ?

Theorem

If X is convex, the static and dynamic formulations are equivalent.

- **?** If γ is an optimal transference plan, then $\rho_t = \pi_t \# \gamma$ is an optimal path, where $\pi_t(x, y) = (1-t)x + ty$.
- ♀ As a consequence, the set of all probabilities endowed with the 2-Wasserstein distance is a geodesic space.

From dynamical OT to unbalanced OT

 \blacksquare μ and ν two positive finites measures : they do not share the same total mass.

From dynamical OT to unbalanced OT

 \blacksquare μ and ν two positive finites measures : they do not share the same total mass.

Constraints = conservation of mass destruction/creation of mass Action(ρ ,v, r) = $\frac{1}{2} \int_0^1 \int_X (|v_t(x)|^2 + |r_t(x)|^2) \rho_t(x) dx dt$

From dynamical OT to unbalanced OT

 \blacksquare μ and ν two positive finites measures : they do not share the same total mass.

Constraints = conservation of mass destruction/creation of mass Action(ρ ,v, r) = $\frac{1}{2} \int_0^1 \int_X (|v_t(x)|^2 + |r_t(x)|^2) \rho_t(x) dx dt$

$$UOT(\mu, \nu) = \min_{\rho:[0,1]\to M_+(X)} \left\{ Action(\rho, \nu, r) \text{ s.t. } \partial_t \rho + \operatorname{div}_{\times} \rho \nu = \rho r, \rho_0 = \mu, \rho_1 = \nu \right\}$$

Further comments

- Unbalanced OT is a distance between measures which do not share the same mass. In particular between any two (integrable) functions.
- Notice that even between two probabilities, Unbalanced OT and Static OT may be different.

Denoting by S_+ the set of $n \times n$ positive semi-definite matrices, previous constraints and action can be replaced by PSD-valued measures (Li & Zou, 2020) :

■ S_0 , S_1 two PSD-valued measures on a domain of \mathbb{R}^d .

Minimizing among all continuous path $\mathscr{S}:[0,1] \mapsto \mathbb{S}_+$ the previous (matricial) action subject to the previous (matricial) constraints, leads us to define a distance between **matrix-valued distributions**:

 $\mathsf{MUOT}(S_0, S_1) = \min_{\mathscr{S}} \{ Action(\mathscr{S}, \mathscr{V}, \mathscr{R}) \text{ s.t. Creation/Destruction Equation} \}$

 $\$ In particular, we obtain a distance between covariance distributions.

Bibliography

OT monographs :

G. Peyré, M. Cuturi, Computational Optimal Transport.

C. Villani, Optimal transport, old and new.

F. Santambrogio, Optimal Transport for Applied Mathematicians.

Bibliography of the author :

B., G. Carlier, B. Nazaret, Applied Mathematics and Optimization Journal, 2023.B., . Multi-species optimal transportation. Journal of Optimization Theory and Applications, 2020.

Python Libraries :

POT: Python Optimal Transport. OTT-JAX.

The end

Generalizations and applications

Thank you for your attention.