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What is Optimal Transport? 2/2

B e P(X), ve P(Y) are respectively the and the target distributions.
B c=c(x,y) is the transport cost.
The (Static) Optimal Transport problem is defined as follows

OTc(w,v) = min{j;(xyc(x,y) dy(x,y) s.t. yel’[(u,v)},

where TI(u, v) denotes the set of all ye &2(X x Y') having /1« and © as marginals, called
transference plans.

@ (Discrete setting) i Oy, V= Z ,BJ(S},J, with Z a; = Z Bj=1, a;B;=0,

OTc(w,v)=0T(a, B) =min {(cly} st. y-1=a,7 1= b}.
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Wasserstein distance

p-Wasserstein distance

If (X,d) is a metric space and ¢ =dP , then

OT¢. is a distance on Z(X) if 0<p<1,
OTi/p is a distance on Z(X) if p>1.

B OT. metrizes the weak-* convergence of probabilities (convergence in Law).

B If p=2, OT, is a geodesical distance: any pair of probabilities u and v can be
connected by a continuous path of length OT2(u,v).






Q It depends on the cost c.



HOW DO WE SOLVE OT. 7

Q It depends on the cost c.

A Computing OT.(u,v) means solving an (linear) optimization problem, except for
few cases...
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B X=Y=R, c(x,y)=Ix—-ylP, p=1 (convex case).

@@f\ 0 @.

Figure: Histogram equalization

1 dimensional Wasserstein

Denoting F~! the (generalized) quantile
function

)

Wo(uv)P =Rt - £,

that is (R, Wp) is isometric to LP(R)
through the map pu— F*.

9 Computational aspect : O(nlogn+mlogm)
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Gaussian OT
— K Gaussian quadratic OT
0.5 - ) v
— L“ mean
1
0.4 ——OT> mean X= Y:Rd, C(X,y)=§|X—y|2,

p~ A (My,Zh), v~ A (my,Zy).

0.3
OTg(p,v)2 =|my - my|? + Bures(Zu,Zv)2

0.2

Q@ OT, between Gaussian densities is the L2
distance between parameters.

1/2
1/20 _1/2
zu+zv2(zu/ zvz,/) ]

0.1

-4 -2 0 2 4 6
Bures(Zy, Zv)2 =trace
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Computational aspects : motivations

B X ={x,-,xp}, Y ={y1,--,¥m} and the cost ¢ = c(x,y) is arbitrary.
n m

B =Y aibx, =Y B0y, (weighted point clouds).
i=1 j=1

As a linear problem, OT. can be solved using Hungarian algorithm but...

Computing OT . using Hungarian algorithm

AO((n+m)nmlog(n+m)) A
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Computational aspects : motivations

B X ={x,-,xp}, Y ={y1,--,¥m} and the cost ¢ = c(x,y) is arbitrary.
n m

B =Y aibx, =Y B0y, (weighted point clouds).
i=1 j=1

As a linear problem, OT. can be solved using Hungarian algorithm but...

Computing OT . using Hungarian algorithm

AO((n+m)nmlog(n+m)) A

WE MUST REGULARIZE
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X, Y finite and v e RX, 3 e RY denotes the and the target distributions. We
introduce the discrete entropy of y as

Entropy(y) = - ZYU [log(yy)—1]
ij

Entropic OT (Cuturi 2013)

For a fixed € 0, the regularized OT problem is given by

OT#(a, B) = min {(cly} — e Entropy () s.t. Y€ H(a,ﬁ)},

whose unique solution converges to the solution of .7 (a, ) with maximal entropy.

@ The original linear optimization problem (&=0) is replaced by a strongly convex
problem.



In instead of solving OT¢, we solve the dual problem of OT#. Once solved, we
construct the solution to our initial problem, using the optimal primal-dual conditions:

OT(a,p) [+----1 OT*(a, p)
~_ o %

regularization

v

Dual®(a,3)

y© =diagexp(4°/¢)] - K* - diag [exp(t)° /€)],
where

¥ = argmin OT#(a, B)

(¢°,1°) = argmax Dual® («, 3)
K¢ =exp(—c/¢€) (heat kernel)
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A short digression about duality 1/2

An external provider (say Alice) offers to transport the coal with her own trucks
according to the following contract.

Alice chooses the price ¢(x) for loading in x.
Alice chooses the price y(y) for unloading in y.
Alice assures me that it will cost less than doing it myself

o(x)+y(y) <c(xy).

Alice charges me (@ |u)+(yw|v).

Dual(i,v) = max{{@|u) +{wiv): o(x)+w(y) < c(x,y)}. (Alice problem)
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A short digression about duality 2/2
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Dual(p,v) = max{{@[u) + (v |v) : o(x) + ¥ (y) < c(x,y)}
What is the link between Dual(y,v) and OT(y,v) 7

Theorem (strong duality)

Dual(y,v) = OT(,v) and any solution of Dual(y,v) leads to a solution of
OT(u,v).

@ OT(u,v) is a optimization problem on R™™ while Dual(u,v) is on R™*™M.
p Il
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Strategy

In instead of solving OT¥¢, we solve the dual problem of OT#. Once solved, we
construct the solution to our initial problem, using the optimal primal-dual conditions:

e—0 - Solving  Dual®(a,8) using  Sinkhorn's
OT(a,p) |-~~~ OT*(a, ) algorithm  (Cuturi,  2013) setting
\l—_/ ut = exp(¢pf/e) and v = exp(y*/e), starting
regularization with u® =1x,v% =1y, we compute alternatively
k+1_ @ k+1 _ B
j v = and vt = P

Dual‘;(a,ﬁ)

whose convergence is linear.
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From scalar OT to multi-species OT

Optimal Transport : 2 species
1 I I T T T T T T
081 =1+ U2 V=v1+V

0.4}
0.2}

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
X=Y=[02]

B =+ P(X), v=vi+vae 2(Y).
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From scalar OT to multi-species OT
Optimal Transport : 2 species

1 T T T T T T T T
081 M=+ i1 V=vi+V2 i
0.6 - C12
041 1
0.2 €22

0 | | |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X=Y=[0,2]

B =+ P(X), v=vi+vae 2(Y).
B Four costs cy1, €12, €1, €.
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From scalar OT to multi-species OT

Optimal Transport : 2 species
1 I T T T T T T T

08} B=H1+H2 C11,Y11 V=Vt v |
0.6 S a0 }

04) S vt |
0.2 - €22,722
0 | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X=Y=[0,2]

B =+ P(X), v=vi+vae 2(Y).
B Four costs cy1, €12, €1, €.

B ...And as much transference plans y11, Y12, Y21, Y22.
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Distance on R measures

B Classical OT: if (X,d) is a Polish space, for pe[1,00) and c=dP, TP is a
distance on Z,(X).

B Multi-species OT: setting cj; = dg, we make the following assumption

dik(x,z) < djj(x,y) + dik(y,z) (Mixed Triangles Inequalities)

Theorem (B. 2020)

Given n? functions (dj;) defined on X x X and R,-valued such that
[1] V(i,j) € [[1, n])?, d;; is symmetric.

[2] (MTI) is satisfied for all (i,j, k)€ [[1,n]® et (x,y,z) € X3.

[3]1 Vie[1,n]],¥x € X,d;i(x,x)=0.

[4] Y(i,j) € [1,n])%,i #j,¥(x,y) € X x X, djj(x,y) #0.

Then MultiOT is a distance between multi-valued probabilities.
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B X is a compact metric space.

B u=(u,...,un) €4 (X)N are the source distributions of goods in region X.
B v=(vy,...,vy) €4 (X)N are the target distributions of goods in region X.

Primal problem
(2) =max{ st p(X)=vi(9)}.




B X is a compact metric space.

B u=(u,...,un) €4 (X)N are the source distributions of goods in region X.
B v=(vy,...,vy) €4 (X)N are the target distributions of goods in region X.
B % =% (v) is the average utility.

Primal problem
(2)=max{ % (v) st p(X)=vi(9)}.




B X is a compact metric space.

B u=(u,...,un) €4 (X)N are the source distributions of goods in region X.
B v=(vy,...,vy) €4 (X)N are the target distributions of goods in region X.
B % =% (v) is the average utility.

N
B J(uv)=Y OT.(ui,v;) is the transport cost between p and v.
i=1

(2)=max{ % (v)- 7 (wv) st. si(X)=vi(X)}.
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Economic interpretation

Let (B,¢) be optimal in (&) and (Z). Then we have an equilibrium for the initial
monetary endowment w (@€l a) (@|B)(= T-(a,B)) in the sense that:

Sellers at x maximize their profits by exporting their goods a(x):
profits;(x) = max @i(y) - ci(x,y) (== (x))
total profits(x) = (profits(x) | a(x))
Consumers in y have an initial endowment w(y) and buy Bi(y) in such a way:

export profit
——t
Bily) = argmax U(y,8) st (@1B)<(-¢°(y)laly)) +w(y)

~
total revenue

Markets are clear : it exists an optimal transport plan for all target endowments.
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B X =Y = adomain of RY, (11,) € Z(X)? and c(x,y) = 2Ix—y[2.
@ We introduce the time variable t and consider all the kinematics p = p; which
linked /¢ (initial time, t=0) to v (final time, t =1).
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B X =Y = adomain of RY, (;1,)e 2(X)? and c(x,y) = Slx—yl2.
@ We introduce the time variable t and consider all the kinematics p = p; which
(initial time, t=0) to v (final time, t=1).

linked

0.125 A
0.100 1
0.075
0.050 1
0.025 q

0.000 1

Dynamic OT

source distribution
—— Target distribution

Constraints = conservation of mass

Action(p,v) = %fol Sx e (x)12p¢(x) dx dt
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Dynamical formulation of OT 1/2

B X =Y = adomain of RY, (;1,)e 2(X)? and c(x,y) = Slx—yl2.
@ We introduce the time variable t and consider all the kinematics p = p; which
linked / (initial time, t=0) to v (final time, t=1).

Dynamic OT . .
0125 Constraints = conservation of mass

source distribution
Action(p,v) = %fol Sx e (x)12p¢(x) dx dt

0.100 —— Target distribution
0.075
0.050 1

0.025 q

0.000 1

DynamicOT(i,v)=  min__ {Action(p,v) s.t. ¢p +divxpv =0 and pg=p,p1=v}
p:[0,1]—P(X)
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Dynamic formulation of OT 2/2

Is there a link between DynamicOT(u,v) and OTa(p,v) ?

If X is convex, the static and dynamic formulations are equivalent.

Q If y is an optimal transference plan, then p; = m:#y is an optimal path, where
mi(x,y)=(1-t)x+ty.

@ As a consequence, the set of all probabilities endowed with the 2-Wasserstein
distance is a geodesic space.



B . and v two positive finites measures : they do not share the same total mass.



B . and v two positive finites measures : they do not share the same total mass.

Constraints = cons forr of mass  destruction/creation of mass

Action(p,v, r) =% [o [ (e ()12 +1re(x)12) pe(x) dx dt
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From dynamical OT to unbalanced OT

B . and v two positive finites measures : they do not share the same total mass.

Constraints = cons torm of mass  destruction/creation of mass

Action(p,v, r) =3 fi fx (Ive(x)12 +1re(x)1) pe(x) dx dt

UOT(w,v) = min  {Action(p,v,r) s.t. d¢p +divxpv =pr,po=p,p1 ="}
p:[0,1]— M. (X)
Unbalanced OT

0.20

Source distribution
0.15 { —— Target distribution
0.10 A
0.05 A
0.00 1




B Unbalanced OT is a distance between measures which do not share the same
mass. In particular between any two (integrable) functions.
B Notice that even between two probabilities, Unbalanced OT and Static OT may be
different.

Dynamic OT

0.125
0.100 A
0.075 A
0.050 A

0.025 A

0.000 A

"."
9%

A
T
= v’v,"." ()
:o::‘:’:f:fg;\

~—— Source distribution
—— Target distribution
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To go further...matrix-valued OT

Denoting by S, the set of nx n positive semi-definite matrices, previous constraints and
action can be replaced by PSD-valued measures (Li & Zou, 2020) :

B S, S; two PSD-valued measures on a domain of RY.

Minimizing among all continuous path .7 :[0,1] — S, the previous (matricial) action
subject to the previous (matricial) constraints, leads us to define a distance between
matrix-valued distributions:

MUOT(So, 51) = myi;n {Action(./, V', Z) s.t. Creation/Destruction Equation}

@ In particular, we obtain a distance between covariance distributions.
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Thank you for your attention.
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