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Static OT Generalizations and applications

What is Optimal Transport? 1/2

How can we describe the transportation of mass ?
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What is Optimal Transport? 1/2

Among all transference, which is the best?
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What is Optimal Transport? 2/2

■ µ ∈P(X ), ν ∈P(Y ) are respectively the source and the target distributions.
■ c = c(x ,y) is the transport cost.

The (Static) Optimal Transport problem is defined as follows

OTc(µ,ν)=min

{∫
X×Y

c(x ,y)dγ(x ,y) s.t. γ ∈Π(µ,ν)

}
,

where Π(µ,ν) denotes the set of all γ ∈P(X ×Y ) having µ and ν as marginals, called
transference plans.

 (Discrete setting) µ=
n∑
i=1

αiδxi , ν =
m∑
j=1

βjδyj , with
n∑
i=1

αi =
m∑
j=1

βj = 1, αi ,βj Ê 0,

OTc(µ,ν)=OTc(α,β)=min
{〈
c |γ〉

s.t. γ · 1= a, γT · 1= b
}

.
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Wasserstein distance

p-Wasserstein distance

If (X ,d) is a metric space and c = dp , then

OTc is a distance on P(X ) if 0< p É 1,

OT1/p
c is a distance on P(X ) if p > 1.

■ OTc metrizes the weak-* convergence of probabilities (convergence in Law).
■ If p = 2, OT2 is a geodesical distance: any pair of probabilities µ and ν can be

connected by a continuous path of length OT2(µ,ν).
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Solving OT problem

HOW DO WE SOLVE OTc ?

 It depends on the cost c .
" Computing OTc(µ,ν) means solving an (linear) optimization problem, except for

few cases...
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1 dimensional OT

■ X =Y =R, c(x ,y)= |x −y |p, p Ê 1 (convex case).

x1 x2 x3 x4y1 y2 y3 y4

Figure: Histogram equalization

1 dimensional Wasserstein

Denoting F−1 the (generalized) quantile
function

Wp(µ,ν)p =
∥∥∥F−1

µ −F−1
ν

∥∥∥
Lp

,

that is (R,Wp) is isometric to Lp(R)
through the map µ 7→ F−1

µ .

 Computational aspect : O(n logn+m logm)



Static OT Generalizations and applications

Gaussian OT
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Computational aspects : motivations

■ X = {x1, · · · ,xn} ,Y = {
y1, · · · ,ym

}
and the cost c = c(x ,y) is arbitrary.

■ µ=
n∑
i=1

αiδxi , ν =
m∑
j=1

βjδyj (weighted point clouds).

As a linear problem, OTc can be solved using Hungarian algorithm but...

Computing OTc using Hungarian algorithm

"O ((n+m)nm log(n+m)) "

WE MUST REGULARIZE
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Regularized OT
X ,Y finite and α ∈RX ,β ∈RY denotes the source and the target distributions. We
introduce the discrete entropy of γ as

Entropy(γ)=−∑
i ,j
γij [log(γij)−1]

Entropic OT (Cuturi 2013)

For a fixed ε 0, the regularized OT problem is given by

OTε(α,β)=min
{〈
c |γ〉 − εEntropy(γ) s .t. γ ∈Π(α,β)

}
,

whose unique solution converges to the solution of T (α,β) with maximal entropy.

 The original linear optimization problem (ε= 0) is replaced by a strongly convex
problem.
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Strategy

In instead of solving OTε, we solve the dual problem of OTε. Once solved, we
construct the solution to our initial problem, using the optimal primal-dual conditions:

OT(α,β) OTε(α,β)
ε→ 0

regularization

Dualε(α,β)

γε = diag [exp(φε/ε)] ·K ε ·diag [exp(ψε/ε)] ,

where

γε = argminOTε(α,β)

(φε,ψε)= argmaxDualε(α,β)
K ε = exp(−c/ε) (heat kernel)



Static OT Generalizations and applications

A short digression about duality 1/2

An external provider (say Alice) offers to transport the coal with her own trucks
according to the following contract.

Alice chooses the price ϕ(x) for loading in x .
Alice chooses the price ψ(y) for unloading in y .
Alice assures me that it will cost less than doing it myself

ϕ(x)+ψ(y)É c(x ,y).

Alice charges me
〈
ϕ |µ〉+〈

ψ |ν〉
.

Dual(µ,ν)=max
{〈
ϕ |µ〉+〈

ψ |ν〉
:ϕ(x)+ψ(y)É c(x ,y)

}
. (Alice problem)
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A short digression about duality 2/2

Dual(µ,ν)=max
{〈
ϕ |µ〉+〈

ψ |ν〉
:ϕ(x)+ψ(y)É c(x ,y)

}
What is the link between Dual(µ,ν) and OT(µ,ν) ?

Theorem (strong duality)

Dual(µ,ν) = OT(µ,ν) and any solution of Dual(µ,ν) leads to a solution of
OT(µ,ν).

 OT(µ,ν) is a optimization problem on Rn×m while Dual(µ,ν) is on Rn+m.
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Strategy

In instead of solving OTε, we solve the dual problem of OTε. Once solved, we
construct the solution to our initial problem, using the optimal primal-dual conditions:

OT(α,β) OTε(α,β)
ε→ 0

regularization

Dualε(α,β)

Solving Dualε(α,β) using Sinkhorn’s
algorithm (Cuturi, 2013) : setting
uε = exp(ϕε/ε) and v ε = exp(ψε/ε), starting
with u0 = 1X ,v0 = 1Y , we compute alternatively

uk+1 = α

K ·vk and vk+1 = β

KT ·uk+1

whose convergence is linear.
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From scalar OT to multi-species OT
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c ,γ

• µ=µ1+µ2 ∈P(X ), ν= ν1+ν2 ∈P(Y ).
• Quatre coûts de transport différents c11, c12, c21, c22.
• ...Et autant de plans de transport γ11, γ12, γ21, γ22.



Static OT Generalizations and applications

From scalar OT to multi-species OT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

X =Y = [0,2]

Optimal Transport : 2 species

µ=µ1+µ2 ν= ν1+ν2

c22

,γ22

c21

,γ21

c12

,γ12

c11

,γ11

■ µ=µ1+µ2 ∈P(X ), ν= ν1+ν2 ∈P(Y ).

■ Four costs c11, c12, c21, c22.
■ ...And as much transference plans γ11, γ12, γ21, γ22.



Static OT Generalizations and applications

From scalar OT to multi-species OT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

X =Y = [0,2]

Optimal Transport : 2 species

µ=µ1+µ2 ν= ν1+ν2

c22

,γ22

c21

,γ21

c12

,γ12

c11

,γ11

■ µ=µ1+µ2 ∈P(X ), ν= ν1+ν2 ∈P(Y ).
■ Four costs c11, c12, c21, c22.

■ ...And as much transference plans γ11, γ12, γ21, γ22.



Static OT Generalizations and applications

From scalar OT to multi-species OT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

X =Y = [0,2]

Optimal Transport : 2 species

µ=µ1+µ2 ν= ν1+ν2

c22,γ22

c21,γ21

c12,γ12

c11,γ11

■ µ=µ1+µ2 ∈P(X ), ν= ν1+ν2 ∈P(Y ).
■ Four costs c11, c12, c21, c22.
■ ...And as much transference plans γ11, γ12, γ21, γ22.



Static OT Generalizations and applications

Distance on Rn
+ measures

■ Classical OT: if (X ,d) is a Polish space, for p ∈ [1,∞) and c = dp, T 1/p is a
distance on Pp(X ).

z

x
y

■ Multi-species OT: setting cij = dp
ij , we make the following assumption

dik(x ,z)É dij(x ,y)+djk(y ,z) (Mixed Triangles Inequalities)

Theorem (B. 2020)

Given n2 functions (dij) defined on X ×X and R+-valued such that
[1] ∀(i , j) ∈ [[1,n]]2,dij is symmetric.
[2] (MTI) is satisfied for all (i , j ,k) ∈ [[1,n]]3 et (x ,y ,z) ∈X 3.
[3] ∀i ∈ [[1,n]],∀x ∈X ,dii (x ,x)= 0.
[4] ∀(i , j) ∈ [[1,n]]2, i ̸= j ,∀(x ,y) ∈X ×X ,dij(x ,y) ̸= 0.
Then MultiOT is a distance between multi-valued probabilities.

[]
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Primal problem

■ X is a compact metric space.

■ µ= (µ1, . . . ,µN) ∈M+(X )N are the source distributions of goods in region X .
■ ν= (ν1, . . . ,νN) ∈M+(X )N are the target distributions of goods in region X .
■ U =U (ν) is the average utility.

■ T (µ,ν)=
N∑
i=1

OTci (µi ,νi ) is the transport cost between µ and ν.

Primal problem

(P)=max

ν

{

U (ν)−T (µ,ν) s.t. µi (X)=νi (X)

}
.
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An example
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Economic interpretation
Let (β,ϕ) be optimal in (P) and (D). Then we have an equilibrium for the initial
monetary endowment w

〈
ϕc |α〉 〈

ϕ |β〉
(=Tc(α,β)) in the sense that:

Sellers at x maximize their profits by exporting their goods α(x):

profitsi (x)=max
y

ϕi (y)−ci (x ,y)
(=−ϕci

i (x)
)

total profits(x)= 〈
profits(x) |α(x)〉

Consumers in y have an initial endowment w(y) and buy βi (y) in such a way:

βi (y)= argmax
β

U(y ,β) s.t.
〈
ϕ |β〉É export profit︷ ︸︸ ︷〈−ϕc(y) |α(y)〉+w(y)︸ ︷︷ ︸

total revenue


Markets are clear : it exists an optimal transport plan for all target endowments.
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Dynamical formulation of OT 1/2

■ X =Y = a domain of Rd , (µ,ν) ∈P(X )2 and c(x ,y)= 1
2 |x −y |2.

 We introduce the time variable t and consider all the kinematics ρ = ρt which
linked µ (initial time, t = 0) to ν (final time, t = 1).

Constraints = conservation of mass

Action(ρ,v) = 1
2
∫ 1
0

∫
X |vt(x)|2ρt(x)dx dt

DynamicOT(µ,ν)= min
ρ:[0,1]→P(X )

{
Action(ρ,v) s.t. ∂tρ+divx ρv = 0 and ρ0 =µ,ρ1 = ν

}
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Dynamic formulation of OT 2/2

Is there a link between DynamicOT(µ,ν) and OT2(µ,ν) ?

Theorem

If X is convex, the static and dynamic formulations are equivalent.

 If γ is an optimal transference plan, then ρt =πt#γ is an optimal path, where
πt(x ,y)= (1− t)x + ty .

 As a consequence, the set of all probabilities endowed with the 2-Wasserstein
distance is a geodesic space.
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From dynamical OT to unbalanced OT

■ µ and ν two positive finites measures : they do not share the same total mass.

Constraints = (((((((((((
conservation of mass destruction/creation of mass

Action(ρ,v , r) = 1
2
∫ 1
0

∫
X (|vt(x)|2+|rt(x)|2)ρt(x)dx dt

UOT(µ,ν)= min
ρ:[0,1]→M+(X )

{
Action(ρ,v ,r) s.t. ∂tρ+divx ρv = ρr ,ρ0 =µ,ρ1 = ν

}
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Further comments

■ Unbalanced OT is a distance between measures which do not share the same
mass. In particular between any two (integrable) functions.

■ Notice that even between two probabilities, Unbalanced OT and Static OT may be
different.
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To go further...matrix-valued OT

Denoting by S+ the set of n×n positive semi-definite matrices, previous constraints and
action can be replaced by PSD-valued measures (Li & Zou, 2020) :
■ S0, S1 two PSD-valued measures on a domain of Rd .

Minimizing among all continuous path S : [0,1] 7→S+ the previous (matricial) action
subject to the previous (matricial) constraints, leads us to define a distance between
matrix-valued distributions:

MUOT(S0,S1)=min
S

{
Action(S ,V ,R) s.t. Creation/Destruction Equation

}
 In particular, we obtain a distance between covariance distributions.
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The end

Thank you for your attention.
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