A few words about Optimal Transport (OT) and its generalizations

Xavier Bacon

Exposé à SAFRAN Paris-Saclay
7/12/2023
(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced matrix-valued OT

(a) G. Monge

(b) L. Kantorovich

Table of Contents

(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

What is Optimal Transport? $1 / 2$

How can we describe the transportation of mass?

What is Optimal Transport? $1 / 2$

How can we describe the transportation of mass ?

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} \\
& \mu \text { and } \nu \text { two weighted point clouds }
\end{aligned}
$$

What is Optimal Transport? $1 / 2$

How can we describe the transportation of mass?

$$
X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}
$$

μ and ν two weighted point clouds
$c=c(x, y)$ transport cost

What is Optimal Transport? $1 / 2$

How can we describe the transportation of mass?

$$
X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}
$$

μ and ν two weighted point clouds
$c=c(x, y)$ transport cost

$\operatorname{Cost}_{c}(\gamma)=\langle c \mid \gamma\rangle$

What is Optimal Transport? $1 / 2$

How can we describe the transportation of mass ?

$$
X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}
$$

μ and ν two weighted point clouds
$c=c(x, y)$ transport cost

$\operatorname{Cost}_{c}(\gamma)=\langle c \mid \gamma\rangle$

What is Optimal Transport? $1 / 2$

Among all transference, which is the best?

$X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$
μ and ν two weighted point clouds
$c=c(x, y)$ transport cost

$\operatorname{Cost}_{c}(\gamma)=\langle c \mid \gamma\rangle$

What is Optimal Transport? 2/2

■ $\mu \in \mathscr{P}(X), \nu \in \mathscr{P}(Y)$ are respectively the source and the target distributions.

- $c=c(x, y)$ is the transport cost.

The (Static) Optimal Transport problem is defined as follows

$$
\mathrm{OT}_{c}(\mu, v)=\min \left\{\int_{X \times Y} c(x, y) d \gamma(x, y) \text { s.t. } \gamma \in \Pi(\mu, v)\right\}
$$

where $\Pi(\mu, v)$ denotes the set of all $\gamma \in \mathscr{P}(X \times Y)$ having μ and ν as marginals, called transference plans.
\& (Discrete setting) $\mu=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{m} \beta_{j} \delta_{y_{j}}$, with $\sum_{i=1}^{n} \alpha_{i}=\sum_{j=1}^{m} \beta_{j}=1, \alpha_{i}, \beta_{j} \geqslant 0$,

$$
\mathrm{OT}_{c}(\mu, v)=\mathrm{OT}_{c}(\alpha, \beta)=\min \left\{\langle c \mid \gamma\rangle \text { s.t. } \gamma \cdot \mathbb{1}=a, \gamma^{T} \cdot \mathbb{1}=b\right\} .
$$

Wasserstein distance

p-Wasserstein distance
If (X, d) is a metric space and $c=d^{p}$, then

$$
\begin{gathered}
\mathrm{OT}_{c} \text { is a distance on } \mathscr{P}(X) \text { if } 0<p \leqslant 1, \\
\mathrm{OT}_{c}^{1 / p} \text { is a distance on } \mathscr{P}(X) \text { if } p>1 .
\end{gathered}
$$

- OT_{c} metrizes the weak-* convergence of probabilities (convergence in Law).
- If $p=2, \mathrm{OT}_{2}$ is a geodesical distance: any pair of probabilities μ and v can be connected by a continuous path of length $\mathrm{OT}_{2}(\mu, v)$.

HOW DO WE SOLVE OT ${ }_{c}$?

8 It depends on the cost c.

Solving OT problem

HOW DO WE SOLVE OT ${ }_{c}$?

8 It depends on the cost c.
\triangle Computing $\mathrm{OT}_{c}(\mu, v)$ means solving an (linear) optimization problem, except for few cases...

1 dimensional OT

■ $X=Y=\mathbb{R}, c(x, y)=|x-y|^{p}, p \geqslant 1$ (convex case).

1 dimensional Wasserstein

Denoting F^{-1} the (generalized) quantile function

$$
W_{p}(\mu, v)^{p}=\left\|F_{\mu}^{-1}-F_{v}^{-1}\right\|_{L^{p}},
$$

that is $\left(\mathbb{R}, W_{p}\right)$ is isometric to $L^{p}(\mathbb{R})$ through the map $\mu \mapsto F_{\mu}^{-1}$.
Figure: Histogram equalization
8 Computational aspect: $O(n \log n+m \log m)$

Gaussian OT

Gaussian quadratic OT

$$
\begin{aligned}
& X=Y=\mathbb{R}^{d}, c(x, y)=\frac{1}{2}|x-y|^{2}, \\
& \mu \sim \mathscr{N}\left(m_{\mu}, \Sigma_{\mu}\right), v \sim \mathscr{N}\left(m_{v}, \Sigma_{v}\right) .
\end{aligned}
$$

$$
\mathrm{OT}_{2}(\mu, v)^{2}=\left|m_{\mu}-m_{v}\right|^{2}+\operatorname{Bures}\left(\Sigma_{\mu}, \Sigma_{v}\right)^{2}
$$

$8 \mathrm{OT}_{2}$ between Gaussian densities is the L^{2} distance between parameters.

$$
\text { Bures }\left(\Sigma_{\mu}, \Sigma_{v}\right)^{2}=\operatorname{trace}\left[\Sigma_{\mu}+\Sigma_{v} 2\left(\Sigma_{\mu}^{1 / 2} \Sigma_{v} \Sigma_{\mu}^{1 / 2}\right)^{1 / 2}\right]
$$

Table of Contents
(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Computational aspects : motivations

■ $X=\left\{x_{1}, \cdots, x_{n}\right\}, Y=\left\{y_{1}, \cdots, y_{m}\right\}$ and the cost $c=c(x, y)$ is arbitrary.
■ $\mu=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{m} \beta_{j} \delta_{y_{j}}$ (weighted point clouds).
As a linear problem, OT_{c} can be solved using Hungarian algorithm but...
Computing OT_{c} using Hungarian algorithm

$$
\triangle O((n+m) n m \log (n+m)) \triangleq
$$

Computational aspects : motivations

■ $X=\left\{x_{1}, \cdots, x_{n}\right\}, Y=\left\{y_{1}, \cdots, y_{m}\right\}$ and the cost $c=c(x, y)$ is arbitrary.
■ $\mu=\sum_{i=1}^{n} \alpha_{i} \delta_{x_{i}}, \nu=\sum_{j=1}^{m} \beta_{j} \delta_{y_{j}}$ (weighted point clouds).
As a linear problem, OT_{c} can be solved using Hungarian algorithm but...
Computing OT_{c} using Hungarian algorithm

$$
\triangle O((n+m) n m \log (n+m)) \triangle
$$

Regularized OT

X, Y finite and $\alpha \in \mathbb{R}^{X}, \beta \in \mathbb{R}^{Y}$ denotes the source and the target distributions. We introduce the discrete entropy of γ as

$$
\operatorname{Entropy}(\gamma)=-\sum_{i, j} \gamma_{i j}\left[\log \left(\gamma_{i j}\right)-1\right]
$$

Entropic OT (Cuturi 2013)

For a fixed $\varepsilon 0$, the regularized OT problem is given by

$$
\mathrm{OT}^{\varepsilon}(\alpha, \beta)=\min \{\langle c \mid \gamma\rangle-\varepsilon \text { Entropy }(\gamma) \text { s.t. } \gamma \in \Pi(\alpha, \beta)\}
$$

whose unique solution converges to the solution of $\mathscr{T}(\alpha, \beta)$ with maximal entropy.

8 The original linear optimization problem $(\varepsilon=0)$ is replaced by a strongly convex problem.

Strategy

In instead of solving $\mathrm{OT}^{\varepsilon}$, we solve the dual problem of $\mathrm{OT}^{\varepsilon}$. Once solved, we construct the solution to our initial problem, using the optimal primal-dual conditions:

$$
\gamma^{\varepsilon}=\operatorname{diag}\left[\exp \left(\varphi^{\varepsilon} / \varepsilon\right)\right] \cdot K^{\varepsilon} \cdot \operatorname{diag}\left[\exp \left(\psi^{\varepsilon} / \varepsilon\right)\right],
$$

where

$$
\begin{aligned}
\gamma^{\varepsilon} & =\operatorname{argmin} \mathrm{OT}^{\varepsilon}(\alpha, \beta) \\
\left(\varphi^{\varepsilon}, \psi^{\varepsilon}\right) & =\operatorname{argmax} \mathrm{Dual}^{\varepsilon}(\alpha, \beta) \\
K^{\varepsilon} & =\exp (-c / \varepsilon) \quad \text { (heat kernel })
\end{aligned}
$$

A short digression about duality $1 / 2$
An external provider (say Alice) offers to transport the coal with her own trucks according to the following contract.

Alice chooses the price $\varphi(x)$ for loading in x.
Alice chooses the price $\psi(y)$ for unloading in y.
Alice assures me that it will cost less than doing it myself

$$
\varphi(x)+\psi(y) \leqslant c(x, y)
$$

Alice charges me $\langle\varphi \mid \mu\rangle+\langle\psi \mid v\rangle$.

$$
\operatorname{Dual}(\mu, v)=\max \{\langle\varphi \mid \mu\rangle+\langle\psi \mid v\rangle: \varphi(x)+\psi(y) \leqslant c(x, y)\} .
$$

A short digression about duality $2 / 2$

$$
\operatorname{Dual}(\mu, v)=\max \{\langle\varphi \mid \mu\rangle+\langle\psi \mid v\rangle: \varphi(x)+\psi(y) \leqslant c(x, y)\}
$$

What is the link between $\operatorname{Dual}(\mu, v)$ and $\operatorname{OT}(\mu, v)$?
Theorem (strong duality)
$\operatorname{Dual}(\mu, v)=\operatorname{OT}(\mu, v)$ and any solution of $\operatorname{Dual}(\mu, v)$ leads to a solution of OT (μ, v).
\& OT (μ, v) is a optimization problem on $\mathbb{R}^{n \times m}$ while Dual (μ, v) is on \mathbb{R}^{n+m}.

Strategy

In instead of solving $\mathrm{OT}^{\varepsilon}$, we solve the dual problem of $\mathrm{OT}^{\varepsilon}$. Once solved, we construct the solution to our initial problem, using the optimal primal-dual conditions:

Solving Dual ${ }^{\varepsilon}(\alpha, \beta)$ using Sinkhorn's algorithm (Cuturi, 2013) : setting $u^{\varepsilon}=\exp \left(\varphi^{\varepsilon} / \varepsilon\right)$ and $v^{\varepsilon}=\exp \left(\psi^{\varepsilon} / \varepsilon\right)$, starting with $u^{0}=\mathbb{1}_{X}, v^{0}=\mathbb{1}_{Y}$, we compute alternatively

$$
u^{k+1}=\frac{\alpha}{K \cdot v^{k}} \text { and } v^{k+1}=\frac{\beta}{K^{T} \cdot u^{k+1}}
$$

whose convergence is linear.

Table of Contents
(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

From scalar OT to multi-species OT

Optimal Transport : 1 specie

From scalar OT to multi-species OT

Optimal Transport : 2 species

■ $\mu=\mu_{1}+\mu_{2} \in \mathscr{P}(X), v=v_{1}+v_{2} \in \mathscr{P}(Y)$.

From scalar OT to multi-species OT

Optimal Transport : 2 species

■ $\mu=\mu_{1}+\mu_{2} \in \mathscr{P}(X), v=v_{1}+v_{2} \in \mathscr{P}(Y)$.
\square Four costs $c_{11}, c_{12}, c_{21}, c_{22}$.

From scalar OT to multi-species OT

Optimal Transport : 2 species

■ $\mu=\mu_{1}+\mu_{2} \in \mathscr{P}(X), v=v_{1}+v_{2} \in \mathscr{P}(Y)$.

- Four costs $c_{11}, c_{12}, c_{21}, c_{22}$.

■ ...And as much transference plans $\gamma_{11}, \gamma_{12}, \gamma_{21}, \gamma_{22}$.

Distance on \mathbb{R}_{+}^{n} measures

■ Classical OT: if (X, d) is a Polish space, for $p \in[1, \infty)$ and $c=d^{p}, \mathscr{T}^{1 / p}$ is a distance on $\mathscr{P}_{p}(X)$.

■ Multi-species OT: setting $c_{i j}=d_{i j}^{p}$, we make the following assumption

$$
d_{i k}(x, z) \leqslant d_{i j}(x, y)+d_{j k}(y, z) \quad \text { (Mixed Triangles Inequalities) }
$$

Theorem (B. 2020)

Given n^{2} functions $\left(d_{i j}\right)$ defined on $X \times X$ and \mathbb{R}_{+}-valued such that [1] $\forall(i, j) \in[[1, n]]^{2}, d_{i j}$ is symmetric.
[2] (MTI) is satisfied for all $(i, j, k) \in[[1, n]]^{3}$ et $(x, y, z) \in X^{3}$.
[3] $\forall i \in[[1, n]], \forall x \in X, d_{i i}(x, x)=0$.
[4] $\forall(i, j) \in[[1, n]]^{2}, i \neq j, \forall(x, y) \in X \times X, d_{i j}(x, y) \neq 0$.
Then MultiOT is a distance between multi-valued probabilities.

Table of Contents

(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Primal problem

- X is a compact metric space.

Primal problem

$$
(\mathscr{P})=\max \{
$$

Primal problem

- X is a compact metric space.

■ $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.

Primal problem

$$
(\mathscr{P})=\max \{
$$

Primal problem

- X is a compact metric space.

■ $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.
■ $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.

Primal problem

$$
(\mathscr{P})=\max _{\nu}\left\{\quad \text { s.t. } \mu_{i}(X)=\nu_{i}(X)\right\}
$$

Primal problem

- X is a compact metric space.

■ $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.

- $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.
- $\mathscr{U}=\mathscr{U}(\nu)$ is the average utility.

Primal problem

$$
(\mathscr{P})=\max _{\nu}\left\{\mathscr{U}(\nu) \quad \text { s.t. } \mu_{i}(X)=\nu_{i}(X)\right\}
$$

Primal problem

- X is a compact metric space.

■ $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.

- $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.
- $\mathscr{U}=\mathscr{U}(\nu)$ is the average utility.

■ $\mathscr{T}(\mu, \nu)=\sum_{i=1}^{N} \mathrm{OT}_{c_{i}}\left(\mu_{i}, \nu_{i}\right)$ is the transport cost between μ and ν.
Primal problem

$$
(\mathscr{P})=\max _{\nu}\left\{\mathscr{U}(\nu)-\mathscr{T}(\mu, \nu) \text { s.t. } \mu_{i}(X)=\nu_{i}(X)\right\} .
$$

An example

Source distribution

Target distribution

Optimal transference plan

Utility

Economic interpretation

Let (β, φ) be optimal in (\mathscr{P}) and (\mathscr{D}). Then we have an equilibrium for the initial monetary endowment $\boldsymbol{\omega}\left\langle\boldsymbol{\varphi}^{\boldsymbol{c}} \mid \boldsymbol{\alpha}\right\rangle\langle\boldsymbol{\varphi} \mid \boldsymbol{\beta}\rangle\left(=\mathscr{T}_{c}(\alpha, \beta)\right)$ in the sense that:

Sellers at x maximize their profits by exporting their goods $\alpha(x)$:

$$
\begin{aligned}
\operatorname{profits}_{i}(x) & =\max _{y} \varphi_{i}(y)-c_{i}(x, y) \quad\left(=-\varphi_{i}^{c_{i}}(x)\right) \\
\text { total } \operatorname{profits}(x) & =\langle\operatorname{profits}(x) \mid \alpha(x)\rangle
\end{aligned}
$$

Consumers in y have an initial endowment $w(y)$ and buy $\beta_{i}(y)$ in such a way:

$$
\beta_{i}(y)=\underset{\beta}{\operatorname{argmax}}\{\boldsymbol{U}(\boldsymbol{y}, \boldsymbol{\beta}) \text { s.t. }\langle\varphi \mid \beta\rangle \leqslant \underbrace{\overbrace{\left\langle-\varphi^{c}(y) \mid \alpha(y)\right\rangle}^{\text {export profit }}+w(y)}_{\text {total revenue }}\}
$$

Markets are clear: it exists an optimal transport plan for all target endowments.

Table of Contents

(1) Static OT

- Formulation and examples
- Numerical aspects
(2) Generalizations and applications
- Multi-species OT
- A spatial exchange economy problem
- Dynamical, unbalanced and matrix-valued OT

Dynamical formulation of OT $1 / 2$

■ $X=Y=$ a domain of $\mathbb{R}^{d},(\mu, \nu) \in \mathscr{P}(X)^{2}$ and $c(x, y)=\frac{1}{2}|x-y|^{2}$.
8 We introduce the time variable t and consider all the kinematics $\rho=\rho_{t}$ which linked μ (initial time, $t=0$) to ν (final time, $t=1$).

Dynamical formulation of OT $1 / 2$

■ $X=Y=$ a domain of $\mathbb{R}^{d},(\mu, \nu) \in \mathscr{P}(X)^{2}$ and $c(x, y)=\frac{1}{2}|x-y|^{2}$.
8 We introduce the time variable t and consider all the kinematics $\rho=\rho_{t}$ which linked μ (initial time, $t=0$) to ν (final time, $t=1$).

Constraints $=$ conservation of mass
$\operatorname{Action}(\rho, v)=\frac{1}{2} \int_{0}^{1} \int_{X}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t$

Dynamical formulation of OT $1 / 2$

■ $X=Y=$ a domain of $\mathbb{R}^{d},(\mu, \nu) \in \mathscr{P}(X)^{2}$ and $c(x, y)=\frac{1}{2}|x-y|^{2}$.
8 We introduce the time variable t and consider all the kinematics $\rho=\rho_{t}$ which linked μ (initial time, $t=0$) to ν (final time, $t=1$).

Constraints $=$ conservation of mass
$\operatorname{Action}(\rho, v)=\frac{1}{2} \int_{0}^{1} \int_{X}\left|v_{t}(x)\right|^{2} \rho_{t}(x) d x d t$

$$
\operatorname{DynamicOT}(\mu, v)=\min _{\rho:[0,1] \rightarrow P(X)}\left\{\operatorname{Action}(\rho, v) \text { s.t. } \partial_{t} \rho+\operatorname{div}_{x} \rho v=0 \text { and } \rho_{0}=\mu, \rho_{1}=v\right\}
$$

Dynamic formulation of OT 2/2

Is there a link between $\operatorname{DynamicOT}(\mu, v)$ and $\mathrm{OT}_{2}(\mu, v)$?

Theorem

If X is convex, the static and dynamic formulations are equivalent.
8 If γ is an optimal transference plan, then $\rho_{t}=\pi_{t} \# \gamma$ is an optimal path, where $\pi_{t}(x, y)=(1-t) x+t y$.
8 As a consequence, the set of all probabilities endowed with the 2 -Wasserstein distance is a geodesic space.

From dynamical OT to unbalanced OT

■ μ and v two positive finites measures : they do not share the same total mass.

From dynamical OT to unbalanced OT

- μ and v two positive finites measures : they do not share the same total mass.

Constraints $=$ conservation of mass destruction/creation of mass

$$
\operatorname{Action}(\rho, v, r)=\frac{1}{2} \int_{0}^{1} \int_{X}\left(\left|v_{t}(x)\right|^{2}+\left|r_{t}(x)\right|^{2}\right) \rho_{t}(x) d x d t
$$

From dynamical OT to unbalanced OT

■ μ and v two positive finites measures : they do not share the same total mass.
Constraints $=$ conservation of mass destruction/creation of mass
$\operatorname{Action}(\rho, v, r)=\frac{1}{2} \int_{0}^{1} \int_{X}\left(\left|v_{t}(x)\right|^{2}+\left|r_{t}(x)\right|^{2}\right) \rho_{t}(x) d x d t$
$\operatorname{UOT}(\mu, v)=\min _{\rho:[0,1] \rightarrow M_{+}(X)}\left\{\operatorname{Action}(\rho, v, r)\right.$ s.t. $\left.\partial_{t} \rho+\operatorname{div}_{x} \rho v=\rho r, \rho_{0}=\mu, \rho_{1}=v\right\}$

Further comments

■ Unbalanced OT is a distance between measures which do not share the same mass. In particular between any two (integrable) functions.

- Notice that even between two probabilities, Unbalanced OT and Static OT may be different.

Dynamic OT

To go further...matrix-valued OT

Denoting by \mathbb{S}_{+}the set of $n \times n$ positive semi-definite matrices, previous constraints and action can be replaced by PSD-valued measures (Li \& Zou, 2020) :

- S_{0}, S_{1} two PSD-valued measures on a domain of \mathbb{R}^{d}.

Minimizing among all continuous path $\mathscr{S}:[0,1] \mapsto \mathbb{S}_{+}$the previous (matricial) action subject to the previous (matricial) constraints, leads us to define a distance between matrix-valued distributions:

$$
\operatorname{MUOT}\left(S_{0}, S_{1}\right)=\min _{\mathscr{S}}\{\operatorname{Action}(\mathscr{S}, \mathscr{V}, \mathscr{R}) \text { s.t. Creation/Destruction Equation }\}
$$

8 In particular, we obtain a distance between covariance distributions.

Bibliography

OT monographs :
G. Peyré, M. Cuturi, Computational Optimal Transport.
C. Villani, Optimal transport, old and new.
F. Santambrogio, Optimal Transport for Applied Mathematicians.

Bibliography of the author :
B., G. Carlier, B. Nazaret, Applied Mathematics and Optimization Journal, 2023.
B., . Multi-species optimal transportation. Journal of Optimization Theory and Applications, 2020.
Python Libraries:
POT: Python Optimal Transport.
OTT-JAX.

The end

Thank you for your attention.

