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A digression through Optimal Transport

µ,ν ∈M+(X ) are respectively the source and the target distributions.
c = c(x ,y) is the non-negative transport cost satisfying c(x ,x)= 0 for all x ∈X .
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Transference plan

The Optimal Transport problem is defined as follows

Tc(µ,ν)= inf

{∫
X 2

c(x ,y)dγ(x ,y) s.t. γ ∈Π(µ,ν)

}

where Π(µ,ν) denotes the set of all γ ∈M+(X 2)
having µ and ν as marginals, called transference plans.

Remark : if µ(X ) ̸= ν(X ), Tc(µ,ν)=+∞.
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A digression through Optimal Transport

Duality : as a convex minimization problem, Tc(µ,ν) admits the following concave
maximization formulation

Tc(µ,ν)= sup

{∫
X
ψ(x)dµ(x)+

∫
X
ϕ(y)dν(y) s.t. ψ(x)+ϕ(y)É c(x ,y)

}
where ψ,ϕ are two bounded and continuous functions.
A substitution : ψ(x)←−ϕc(x) def.= inf

y
c(x ,y)−ϕ(y) improves the dual cost and

satisfies the contraints. As a consequence the Optimal Transport problem can be
rewritten as follows

Tc(µ,ν)= sup
ϕ

{∫
X
ϕc(x)dµ(x)+

∫
X
ϕ(y)dν(y)

}
.
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Primal problem

X is a compact metric space.

µ= (µ1, . . . ,µN) ∈M+(X )N are the source distributions of goods in region X .
ν= (ν1, . . . ,νN) ∈M+(X )N are the target distributions of goods in region X .
U =U (ν) is the average utility.

T (µ,ν)=
N∑
i=1

Tci (µi ,νi ) is the transport cost between µ and ν.

Primal problem

(P )= sup

ν

{

U (ν)−T (µ,ν) s.t. µi (X)= νi (X)

}
.
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Utility

The average utility U is given by

U (ν)=
{ ∫

X U(x ,β1(x), . . .,βN(x))dm(x) if νi =βi ·m for i = 1,. . . ,N
−∞ otherwise

where
m is a reference measure i .e. µi ≪m for i = 1, . . . ,N.
U : (x ,β) ∈X×RN+ 7→U(x ,β) ∈R∪ {−∞} is the preference of the agent located in x .
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An example
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Existence of a minimizer

Technical assumptions on U and c

1 ∀i = 1, . . . ,N , ci is continuous, nonnegative and ci (x ,x)= 0 for all x ∈X .
2 for m-a.e. x ∈X , U is upper semi-continuous, concave, nondecreasing.
3 for every β ∈RN+ , x ∈X 7→U(x ,β) is m-measurable.
4 β ∈ L1(X ,m)N 7→ ∫

X U(x ,β(x))dm(x) is not identically equals to −∞.
5 (x ,β) 7→U(x ,β) is sublinear with respect to β uniformly in x ∈X , that is for any
δ> 0, it exists Cδ s.t. for m-a.e. x ∈X ,

U(x ,β)É δ
N∑
i=1

βi +Cδ.
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Existence of a minimizer

(P )= sup
ν

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X)

}
Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization problem (P ) admits at
least one solution.

Proof : N = 1, using the direct method in the calculus of variations, starting with a
maximizing sequence νn =βn ·m, we extract a subsequence (not relabed) which admits
the following convergences

βn
m−a.e.−→ β and νn

∗
* ν

" β may violate the mass constraint and ν may not belong to L1(m) "
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Existence of a minimizer

To overcome this difficulty, starting from ν, build a admissible ν̃ which increases U

and decreases T (µ, .). Let βa ∈ L1 and νs ∈M+(X ) such that νs ⊥m and

ν=βa ·m+νs (Radon-Nikodym)

Let γ ∈Π(µ,ν) be optimal and decompose it into

γ= γ|X×A︸ ︷︷ ︸
γa

+γ|X×Ac︸ ︷︷ ︸
γs

where A satisfies νs(A)=m(Ac)= 0. Set

γ̃= γa+ (Id, Id)#[proj1#γ
s ] ·m.

Then the second marginal of γ̃ solves (P ).
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Duality

Problem (P ) appears naturally as the dual of a convex minimization problem

(D)= inf
{
K (ϕ)+V (ϕ) s.t. ϕ ∈C (X ,R)N

}
where

K (ϕ)=−
N∑
i=1

∫
X
ϕ
ci
i dµi , and V (ϕ)=

∫
X
V (x ,ϕ1(x), . . . ,ϕN(x))dm(x)

with V (x ,ϕ)= sup
{
U(x ,β)−∑N

i=1βiϕi :β ∈RN+
}
.

Theorem (Strong duality)

Under the assumptions above, the following equality is satisfied

(D)= (P ).
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Economic interpretation

Let (β,ϕ) be optimal in (P ) and (D). Then we have an equilibrium for the initial
monetary endowment w = 〈

ϕc |α〉+〈
ϕ |β〉

(=Tc(α,β)) in the sense that:
Sellers at x maximize their profits by exporting their goods α(x):

profitsi (x)=max
y

ϕi (y)−ci (x ,y)
(=−ϕci

i (x)
)

total profits(x)= 〈
profits(x) |α(x)〉

Consumers in y have an initial endowment w(y) and buy βi (y) in such a way:

βi (y)= argmax
β

U(y ,β) s.t.
〈
ϕ |β〉É export profit︷ ︸︸ ︷〈−ϕc(y) |α(y)〉+w(y)︸ ︷︷ ︸

total revenue


Markets are clear : it exists an optimal transport plan for all target endowments.
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Entropy regularization for Optimal Transport

X finite and α,β ∈RX denotes respectively the source and the target distributions.
Entropic OT : a popular and efficient tool in Computational OT since Cuturi’s
paper (2013) : for a fixed ε> 0, the regularized OT problem is given by

T ε(α,β)= inf
{〈
c | γ〉 + εEntropy(γ) s.t. γ ∈Π(α,β)

}
whose unique solution converges to the solution of T (α,β) with maximal entropy.
Computation of regularized OT : optimality conditions reads here

γij = ui Kij vj (NSC)

where ui = exp(ψi/ε), vj = exp(ϕi/ε) and K = exp(−cij/ε). We use the following
scheme to compute it:

uk+1 = α

K ·vk and vk+1 = β

KT ·uk+1
(Sinkhorn’s iterates)
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An entropic approximation algorithm

m is the counting measure.
The algorithm below is based on a variant introduced by G. Peyré (2015) in the context
of Wasserstein gradient flows.

(D)= inf
ϕ∈RX×N

∑
y∈X

V (y ,ϕ(y))+
N∑
i=1

∑
x∈X

αi (x)

=−ϕc (x)︷ ︸︸ ︷
max
y∈X

{ϕi (y)−ci (x ,y)} .

From (D) to (Dε) : max
y∈X

{ϕi (y)−ci (x ,y)} ← ε log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
︸ ︷︷ ︸

soft-max

.

(Dε)= inf
ϕ∈RX×N

∑
y∈X

V (y ,ϕ(y))+ε
N∑
i=1

∑
x∈X

αi (x) log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
.
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Optimality conditions

The optimality conditions for (Dε) writes:

−β(y) ∈ ∂V (y ,ϕ(y)), ∀y ∈X

where β is given by

βi (y)=
∑
x∈X

αi (x)
e
ϕi (y)−ci (x ,y)

ε∑
z∈X e

ϕi (z)−ci (x ,z)
ε

def.= ∑
x∈X

γi (x ,y)

γi solves the Entropic OT problem T ε
ci (αi ,βi ).

β solves the dual problem of (Dε) :

(Pε)= sup
β∈RX×N+

∑
y∈X

U(y ,β(y))−
N∑
i=1

T ε
ci (αi ,βi ).
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Rewritting the dual

(Dε) can be reformulated by considering the convex problem

(D̃ε)= inf
ϕ,ψ

Φε(ϕ,ψ)

where Φε(ϕ,ψ)= ∑
y∈X

V (y ,ϕ(y))−
N∑
i=1

∑
x∈X

αi (x)ψi (x)+ε
N∑
i=1

∑
(x ,y)∈X 2

e
ψi (x)+ϕi (y)−ci (x ,y)

ε .

Proof : for fixed ϕ, the minimizer of ψ 7→Φε(ϕ,ψ) is explicitly given by

ψi (x)= ε log(αi (x))−ε log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
so replacing in Φε, we get

inf
ψ
Φε(ϕ,ψ)=C + ∑

y∈X
V (y ,ϕ(y))+ε

N∑
i=1

∑
x∈X

αi (x) log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
.
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Coordinate descent/Sinkhorn

(D̃ε) can be solved by coordinate descent: starting from (ψ0,ϕ0), updates are
computed as follows:

ψk+1 = argmin
ψ∈RX×N

Φ(ϕk ,ψ) and ϕk+1 = argmin
ϕ∈RX×N

Φ(ϕ,ψk+1).

The first update is explicitly given by

ψk+1
i (x)= ε log(αi (x))−ε log

( ∑
y∈X

e
ϕk
i
(y)−ci (x ,y)

ε

)
The second update is (for fixed i and y) the same as solving a one-dimensional
strictly convex minimization problem.

Remark : if V is smooth and locally strongly convex on its domain, this scheme
convergences linearly (Beck, Tetruashvili, 2013).
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The Cobb-Douglas case

If the utility is of the form

U(x ,β(x))=w(x)
N∏
i=1

βi (x)
ai (Cobb-Douglas utility)

where ai > 0 and a=
N∑
i=1

ai < 1, a direct computation of its Fenchel conjugate gives

V (x ,ϕ(x))=w(x)
1

1−a
N∏
i=1

[aiϕi (x)]
ai
a−1

and the second minimization step is reduced to find the root t of the strictly monotone
equation (for some A and b)

ettb =A

which can be solved using Newton’s or dichotomy methods.
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Simulation
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Perspectives

Extend this problem to other Transport-like models.
Dynamic model?
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Merci pour votre attention.
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