An exchange economy problem with transport costs

X. Bacon, G. Carlier, B. Nazaret

Séminaire du SAMM
21 octobre 2022

Table of Contents

A digression through Optimal Transport

- $\mu, v \in \mathscr{M}_{+}(X)$ are respectively the source and the target distributions.
- $c=c(x, y)$ is the non-negative transport cost satisfying $c(x, x)=0$ for all $x \in X$.

The Optimal Transport problem is defined as follows

$$
\mathscr{T}_{c}(\mu, v)=\inf \left\{\int_{X^{2}} c(x, y) \mathrm{d} \gamma(x, y) \text { s.t. } \gamma \in \Pi(\mu, v)\right\}
$$

where $\Pi(\mu, v)$ denotes the set of all $\gamma \in \mathscr{M}_{+}\left(X^{2}\right)$ having μ and v as marginals, called transference plans.
Remark: if $\mu(X) \neq v(X), \mathscr{T}_{c}(\mu, v)=+\infty$.

A digression through Optimal Transport

Duality : as a convex minimization problem, $\mathscr{T}_{c}(\mu, v)$ admits the following concave maximization formulation

$$
\mathscr{T}_{c}(\mu, v)=\sup \left\{\int_{X} \psi(x) \mathrm{d} \mu(x)+\int_{X} \varphi(y) \mathrm{d} v(y) \text { s.t. } \psi(x)+\varphi(y) \leqslant c(x, y)\right\}
$$

where ψ, φ are two bounded and continuous functions.
A substitution : $\psi(x) \longleftarrow \boldsymbol{\varphi}^{\boldsymbol{c}}(\boldsymbol{x}) \stackrel{\text { def. }}{=}{\underset{y}{\boldsymbol{y}}}_{\boldsymbol{i n}}^{\boldsymbol{c}} \boldsymbol{(x , y)} \boldsymbol{y} \boldsymbol{\varphi}(\boldsymbol{y})$ improves the dual cost and satisfies the contraints. As a consequence the Optimal Transport problem can be rewritten as follows

$$
\mathscr{T}_{c}(\mu, v)=\sup _{\varphi}\left\{\int_{X} \varphi^{c}(x) \mathrm{d} \mu(x)+\int_{X} \varphi(y) \mathrm{d} v(y)\right\} .
$$

Primal problem

- X is a compact metric space.

Primal problem

$$
(\mathscr{P})=\sup \{
$$

\}.

Primal problem

- X is a compact metric space.
- $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.

Primal problem

$$
(\mathscr{P})=\sup \{
$$

$\}$.

Primal problem

- X is a compact metric space.
- $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.
- $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.

Primal problem

$$
(\mathscr{P})=\sup _{v}\left\{\quad \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\}
$$

Primal problem

- X is a compact metric space.
- $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.
- $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.
- $\mathscr{U}=\mathscr{U}(v)$ is the average utility.

Primal problem

$$
(\mathscr{P})=\sup _{v}\left\{\mathscr{U}(v) \quad \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\} .
$$

Primal problem

- X is a compact metric space.
- $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the source distributions of goods in region X.
- $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathscr{M}_{+}(X)^{N}$ are the target distributions of goods in region X.
- $\mathscr{U}=\mathscr{U}(v)$ is the average utility.
- $\mathscr{T}(\mu, v)=\sum_{i=1}^{N} \mathscr{T}_{c_{i}}\left(\mu_{i}, v_{i}\right)$ is the transport cost between μ and v.

Primal problem

$$
(\mathscr{P})=\sup _{v}\left\{\mathscr{U}(v)-\mathscr{T}(\mu, v) \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\} .
$$

Utility

The average utility \mathscr{U} is given by

$$
\mathscr{U}(v)=\left\{\begin{array}{l}
\int_{X} U\left(x, \beta_{1}(x), \ldots, \beta_{N}(x)\right) \mathrm{d} m(x) \text { if } v_{i}=\beta_{i} \cdot m \text { for } \mathrm{i}=1, \ldots, \mathrm{~N} \\
-\infty \text { otherwise }
\end{array}\right.
$$

where

- m is a reference measure i.e. $\mu_{i} \ll m$ for $i=1, \ldots, N$.
- $U:(x, \beta) \in X \times \mathbb{R}_{+}^{N} \mapsto U(x, \beta) \in \mathbb{R} \cup\{-\infty\}$ is the preference of the agent located in x.

An example

Source distribution

Target distribution
M

Optimal transference plan

Existence of a minimizer

Technical assumptions on U and c

$1 \forall i=1, \ldots, N, c_{i}$ is continuous, nonnegative and $\boldsymbol{c}_{\boldsymbol{i}}(\boldsymbol{x}, \boldsymbol{x})=0$ for all $\boldsymbol{x} \in \boldsymbol{X}$.
2 for m-a.e. $x \in X, \mathrm{U}$ is upper semi-continuous, concave, nondecreasing.
3 for every $\beta \in \mathbb{R}_{+}^{N}, x \in X \mapsto U(x, \beta)$ is m-measurable.
$4 \beta \in L^{1}(X, m)^{N} \mapsto \int_{X} U(x, \beta(x)) \mathrm{d} m(x)$ is not identically equals to $-\infty$.
$5(x, \beta) \mapsto U(x, \beta)$ is sublinear with respect to β uniformly in $x \in X$, that is for any $\delta>0$, it exists C_{δ} s.t. for m-a.e. $x \in X$,

$$
U(x, \beta) \leqslant \delta \sum_{i=1}^{N} \beta_{i}+C_{\delta} .
$$

Existence of a minimizer

$$
(\mathscr{P})=\sup _{v}\left\{\mathscr{U}(v)-\mathscr{T}(\mu, v) \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\}
$$

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization problem (\mathscr{P}) admits at least one solution.

Existence of a minimizer

$$
(\mathscr{P})=\sup _{v}\left\{\mathscr{U}(v)-\mathscr{T}(\mu, v) \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\}
$$

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization problem (\mathscr{P}) admits at least one solution.

Proof: $N=1$, using the direct method in the calculus of variations, starting with a maximizing sequence $v^{n}=\beta^{n} \cdot m$, we extract a subsequence (not relabed) which admits the following convergences

$$
\beta^{n} \xrightarrow{m-\text { a.e. }} \beta \text { and } v^{n} \xrightarrow{*} v
$$

Existence of a minimizer

$$
(\mathscr{P})=\sup _{v}\left\{\mathscr{U}(v)-\mathscr{T}(\mu, v) \text { s.t. } \mu_{i}(X)=v_{i}(X)\right\}
$$

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization problem (\mathscr{P}) admits at least one solution.

Proof : $N=1$, using the direct method in the calculus of variations, starting with a maximizing sequence $v^{n}=\beta^{n} \cdot m$, we extract a subsequence (not relabed) which admits the following convergences

$$
\beta^{n} \xrightarrow{m \text {-a.e. }} \beta \text { and } v^{n} \xrightarrow{*} v
$$

$\triangle \beta$ may violate the mass constraint and v may not belong to $L^{1}(m) \triangleq$

Existence of a minimizer

To overcome this difficulty, starting from v, build a admissible $\tilde{\boldsymbol{v}}$ which increases \mathscr{U} and decreases $\mathscr{T}(\mu,$.$) . Let \beta^{a} \in L^{1}$ and $v^{s} \in \mathscr{M}_{+}(X)$ such that $v^{s} \perp m$ and

$$
v=\beta^{a} \cdot m+v^{s}
$$

(Radon-Nikodym)
Let $\gamma \in \Pi(\mu, v)$ be optimal and decompose it into

$$
\gamma=\underbrace{\gamma_{\mid X \times A}}_{\gamma^{a}}+\underbrace{\gamma_{\mid X \times A^{c}}}_{\gamma^{s}}
$$

where A satisfies $v^{s}(A)=m\left(A^{c}\right)=0$. Set

$$
\tilde{\gamma}=\gamma^{a}+(\mathrm{Id}, \mathrm{Id}) \#\left[\operatorname{proj}_{1} \# \gamma^{s}\right] \cdot m .
$$

Then the second marginal of $\tilde{\gamma}$ solves (\mathscr{P}).

Table of Contents

Duality

Problem (\mathscr{P}) appears naturally as the dual of a convex minimization problem

$$
(\mathscr{D})=\inf \left\{\mathscr{K}(\varphi)+\mathscr{V}(\varphi) \text { s.t. } \varphi \in C(X, \mathbb{R})^{N}\right\}
$$

where

$$
\mathscr{K}(\varphi)=-\sum_{i=1}^{N} \int_{X} \varphi_{i}^{c_{i}} \mathrm{~d} \mu_{i}, \text { and } \mathscr{V}(\varphi)=\int_{X} V\left(x, \varphi_{1}(x), \ldots, \varphi_{N}(x)\right) \mathrm{d} m(x)
$$

with $V(x, \varphi)=\sup \left\{U(x, \beta)-\sum_{i=1}^{N} \beta_{i} \varphi_{i}: \beta \in \mathbb{R}_{+}^{N}\right\}$.

Theorem (Strong duality)

Under the assumptions above, the following equality is satisfied

$$
(\mathscr{D})=(\mathscr{P}) .
$$

Economic interpretation

Let (β, φ) be optimal in (\mathscr{P}) and (\mathscr{D}). Then we have an equilibrium for the initial monetary endowment $\boldsymbol{w}=\left\langle\boldsymbol{\varphi}^{\boldsymbol{c}} \mid \boldsymbol{\alpha}\right\rangle+\langle\boldsymbol{\varphi} \mid \boldsymbol{\beta}\rangle\left(=\mathscr{T}_{c}(\alpha, \beta)\right)$ in the sense that:

- Sellers at x maximize their profits by exporting their goods $\alpha(x)$:

$$
\begin{aligned}
\operatorname{profits}_{i}(x) & =\max _{y} \varphi_{i}(y)-c_{i}(x, y) \quad\left(=-\varphi_{i}^{c_{i}}(x)\right) \\
\text { total } \operatorname{profits}(x) & =\langle\operatorname{profits}(x) \mid \alpha(x)\rangle
\end{aligned}
$$

■ Consumers in y have an initial endowment $w(y)$ and buy $\beta_{i}(y)$ in such a way:

$$
\beta_{i}(y)=\underset{\beta}{\operatorname{argmax}}\{\boldsymbol{U}(\boldsymbol{y}, \boldsymbol{\beta}) \text { s.t. }\langle\varphi \mid \beta\rangle \leqslant \underbrace{\overbrace{\left\langle-\varphi^{c}(y) \mid \alpha(y)\right\rangle}^{\text {export profit }}+w(y)}_{\text {total revenue }}\}
$$

■ Markets are clear : it exists an optimal transport plan for all target endowments.

Table of Contents

Entropy regularization for Optimal Transport

X finite and $\alpha, \beta \in \mathbb{R}^{X}$ denotes respectively the source and the target distributions.
■ Entropic OT : a popular and efficient tool in Computational OT since Cuturi's paper (2013) : for a fixed $\boldsymbol{\varepsilon}>0$, the regularized OT problem is given by

$$
\mathscr{T}^{\varepsilon}(\alpha, \beta)=\inf \{\langle c \mid \gamma\rangle+\boldsymbol{\varepsilon} \operatorname{Entropy}(\gamma) \text { s.t. } \gamma \in \Pi(\alpha, \beta)\}
$$

whose unique solution converges to the solution of $\mathscr{T}(\alpha, \beta)$ with maximal entropy.
■ Computation of regularized OT : optimality conditions reads here

$$
\begin{equation*}
\gamma_{i j}=u_{i} K_{i j} v_{j} \tag{NSC}
\end{equation*}
$$

where $u_{i}=\exp \left(\psi_{i} / \varepsilon\right), v_{j}=\exp \left(\varphi_{i} / \varepsilon\right)$ and $K=\exp \left(-c_{i j} / \varepsilon\right)$. We use the following scheme to compute it:

$$
u^{k+1}=\frac{\alpha}{K \cdot v^{k}} \text { and } v^{k+1}=\frac{\beta}{K^{T} \cdot u^{k+1}}
$$

An entropic approximation algorithm

- m is the counting measure.

The algorithm below is based on a variant introduced by G. Peyré (2015) in the context of Wasserstein gradient flows.

An entropic approximation algorithm

- m is the counting measure.

The algorithm below is based on a variant introduced by G. Peyré (2015) in the context of Wasserstein gradient flows.

$$
(\mathscr{D})=\inf _{\varphi \in \mathbb{R}^{\times \times N}} \sum_{y \in X} V(y, \varphi(y))+\sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \overbrace{\max _{y \in X}\left\{\varphi_{i}(y)-c_{i}(x, y)\right\}}^{=-\varphi^{c}(x)} .
$$

An entropic approximation algorithm

- m is the counting measure.

The algorithm below is based on a variant introduced by G. Peyré (2015) in the context of Wasserstein gradient flows.

$$
(\mathscr{D})=\inf _{\varphi \in \mathbb{R}^{X \times N}} \sum_{y \in X} V(y, \varphi(y))+\sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \overbrace{\max _{y \in X}\left\{\varphi_{i}(y)-c_{i}(x, y)\right\}}^{=-\varphi^{c}(x)} .
$$

$$
\left(\mathscr{D}_{\varepsilon}\right)=\inf _{\varphi \in \mathbb{R}^{X} \times N} \sum_{y \in X} V(y, \varphi(y))+\varepsilon \sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \log \left(\sum_{y \in \boldsymbol{X}} e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}\right) .
$$

Optimality conditions

The optimality conditions for $\left(\mathscr{D}_{\varepsilon}\right)$ writes:

$$
-\beta(y) \in \partial V(y, \varphi(y)), \forall y \in X
$$

where β is given by

$$
\beta_{i}(y)=\sum_{x \in X} \boldsymbol{\alpha}_{\boldsymbol{i}}(x) \frac{e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}}{\sum_{\boldsymbol{z} \in \boldsymbol{X}} e^{\frac{\varphi_{i}(z)-c_{i}(x, z)}{\varepsilon}}}
$$

Optimality conditions

The optimality conditions for $\left(\mathscr{D}_{\varepsilon}\right)$ writes:

$$
-\beta(y) \in \partial V(y, \varphi(y)), \forall y \in X
$$

where β is given by

$$
\beta_{i}(y)=\sum_{x \in X} \alpha_{i}(x) \frac{e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}}{\sum_{z \in X} e^{\frac{\varphi_{i}(z)-c_{i}(x, z)}{\varepsilon}}} \stackrel{\text { def. }}{=} \sum_{x \in X} \gamma_{i}(x, y)
$$

Optimality conditions

The optimality conditions for $\left(\mathscr{D}_{\varepsilon}\right)$ writes:

$$
-\beta(y) \in \partial V(y, \varphi(y)), \forall y \in X
$$

where β is given by

$$
\beta_{i}(y)=\sum_{x \in X} \alpha_{i}(x) \frac{e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}}{\sum_{z \in X} e^{\frac{\varphi_{i}(z)-c_{i}(x, z)}{\varepsilon}}} \stackrel{\text { def. }}{=} \sum_{x \in X} \gamma_{i}(x, y)
$$

■ $\boldsymbol{\gamma}_{\boldsymbol{i}}$ solves the Entropic OT problem $\mathscr{T}_{c_{i}}^{\varepsilon}\left(\alpha_{i}, \beta_{i}\right)$.

- β solves the dual problem of $\left(\mathscr{D}_{\varepsilon}\right)$:

$$
\left(\mathscr{P}_{\varepsilon}\right)=\sup _{\beta \in \mathbb{R}_{+}^{\times N}} \sum_{y \in X} U(y, \beta(y))-\sum_{i=1}^{N} \mathscr{T}_{c_{i}}^{\varepsilon}\left(\alpha_{i}, \beta_{i}\right)
$$

Table of Contents

Rewritting the dual

$\left(\mathscr{D}_{\varepsilon}\right)$ can be reformulated by considering the convex problem

$$
\left(\widetilde{\mathscr{D}}_{\varepsilon}\right)=\inf _{\varphi, \psi} \Phi_{\varepsilon}(\varphi, \psi)
$$

where $\Phi_{\varepsilon}(\varphi, \psi)=\sum_{y \in X} V(y, \varphi(y))-\sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \psi_{i}(x)+\varepsilon \sum_{i=1}^{N} \sum_{(x, y) \in X^{2}} e^{\frac{\psi_{i}(x)+\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}$.
Proof : for fixed φ, the minimizer of $\psi \mapsto \Phi_{\varepsilon}(\varphi, \psi)$ is explicitly given by

$$
\psi_{i}(x)=\varepsilon \log \left(\alpha_{i}(x)\right)-\varepsilon \log \left(\sum_{y \in X} e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}\right)
$$

so replacing in Φ_{ε}, we get

$$
\inf _{\psi} \Phi_{\varepsilon}(\varphi, \psi)=C+\sum_{y \in X} V(y, \varphi(y))+\varepsilon \sum_{i=1}^{N} \sum_{x \in X} \alpha_{i}(x) \log \left(\sum_{y \in X} e^{\frac{\varphi_{i}(y)-c_{i}(x, y)}{\varepsilon}}\right) .
$$

Coordinate descent/Sinkhorn

$\left(\widetilde{\mathscr{D}}_{\varepsilon}\right)$ can be solved by coordinate descent: starting from $\left(\psi^{0}, \varphi^{0}\right)$, updates are computed as follows:

$$
\psi^{k+1}=\underset{\psi \in \mathbb{R}^{X \times N}}{\operatorname{argmin}} \Phi\left(\varphi^{k}, \psi\right) \quad \text { and } \quad \varphi^{k+1}=\underset{\varphi \in \mathbb{R}^{X \times N}}{\operatorname{argmin}} \Phi\left(\varphi, \psi^{k+1}\right) .
$$

- The first update is explicitly given by

$$
\psi_{i}^{k+1}(x)=\varepsilon \log \left(\alpha_{i}(x)\right)-\varepsilon \log \left(\sum_{y \in X} e^{\frac{\varphi_{i}^{k}(y)-c_{i}(x, y)}{\varepsilon}}\right)
$$

- The second update is (for fixed i and y) the same as solving a one-dimensional strictly convex minimization problem.
Remark : if V is smooth and locally strongly convex on its domain, this scheme convergences linearly (Beck, Tetruashvili, 2013).

The Cobb-Douglas case

If the utility is of the form

$$
U(x, \beta(x))=w(x) \prod_{i=1}^{N} \beta_{i}(x)^{a_{i}}
$$

(Cobb-Douglas utility)
where $a_{i}>0$ and $a=\sum_{i=1}^{N} a_{i}<1$, a direct computation of its Fenchel conjugate gives

$$
V(x, \varphi(x))=w(x)^{\frac{1}{1-a}} \prod_{i=1}^{N}\left[a_{i} \varphi_{i}(x)\right]^{\frac{a_{i}}{a-1}}
$$

and the second minimization step is reduced to find the root t of the strictly monotone equation (for some A and b)

$$
e^{t} t^{b}=A
$$

which can be solved using Newton's or dichotomy methods.

Simulation

Perspectives

- Extend this problem to other Transport-like models.
- Dynamic model?

Merci pour votre attention.

