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Primal problem

X is a compact metric space.

µ= (µ1, . . . ,µN) ∈M+(X )N are the initial distributions of
goods in region X .
ν= (ν1, . . . ,νN) ∈M+(X )N are the final distributions of goods
in region X .
U =U (ν) is the average utility.
T (µ,ν)=∑N

i=1Tci (µi ,νi ) is the transport cost between µ and
ν.

Primal problem

(P )= sup

ν∈M+(X )N

{

U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}
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What is Tc(µ,ν) ?

µ ∈M+(X ),ν ∈M+(Y ) are respectively the source and the
target distributions. c = c(x ,y) is the transport cost satifying
for all x ,y ∈X ,

c(x ,y)Ê 0 and c(x ,x)= 0.

Transference plan and related cost

γ ∈M+(X×Y) is a transference plan between µ and ν if∫
Y

dγ(x ,y)=µ(x) and
∫
X

dγ(x ,y)= ν(y)

Its related cost with respect to c is given by

〈
c | γ〉 def.=

Ï
X×Y

c(x ,y)dγ(x ,y) ∈ [0,∞].

Xavier Bacon An exchange economy problem with transport costs



What is Tc(µ,ν) ?

µ ∈M+(X ),ν ∈M+(Y ) are respectively the source and the
target distributions. c = c(x ,y) is the transport cost satifying
for all x ,y ∈X ,

c(x ,y)Ê 0 and c(x ,x)= 0.

Transference plan and related cost

γ ∈M+(X×Y) is a transference plan between µ and ν if∫
Y

dγ(x ,y)=µ(x) and
∫
X

dγ(x ,y)= ν(y)

Its related cost with respect to c is given by

〈
c | γ〉 def.=

Ï
X×Y

c(x ,y)dγ(x ,y) ∈ [0,∞].

Xavier Bacon An exchange economy problem with transport costs



Optimal Transport

Π(µ,ν) denotes the set of all transference plans between µ and ν.

Optimal Transport problem
The optimal transport cost between µ and ν is given by

Tc(µ,ν)= inf
{〈
c | γ〉

: γ ∈Π(µ,ν)
}

.
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Utility

The average utility U is given by

U (ν)=
{ ∫

X U(x ,β1(x), . . .,βN(x))dm(x) if νi =βim for i = 1,. . . ,N
−∞ otherwise

where
m is a reference measure i .e. µi ≪m for i = 1, . . . ,N.
U : (x ,β) ∈X×RN+ 7→U(x ,β) ∈R∪ {−∞} is the preference of the
agent located in x .
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Technical assumptions on U and c

1 ∀i = 1, . . . ,N , ci is continuous, nonnegative and ci (x ,x)= 0 for
all x ∈X .

2 for m-a.e. x ∈X , U is upper semi-continuous, concave,
nondecreasing.

3 for every β ∈RN+ , x ∈X 7→U(x ,β) is m-measurable.
4 β ∈ L1(X ,m)N 7→ ∫

X U(x ,β(x))dm(x) is not identically equals
to −∞.

5 (x ,β) 7→U(x ,β) is sublinear with respect to β uniformly in
x ∈X , that is : ∀δ> 0,∃Cδ s.t. for m-a.e. x ∈X

U(x ,β)É δ
N∑
i=1

βi +Cδ
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(P )= sup
ν∈M+(X )N

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization
problem (P ) admits at least one solution.

Proof : N = 1, let νn =βn ·m be a maximizing sequence.
Mass constraints : ∀n ∈N,νn(X )= ∫

βn dm=µ(X )

=⇒ (βn) is bounded in L1(m)

Komlós=⇒ ∃β ∈ L1(m), ∃ subseq. (not relabed) s.t.

1
n

n∑
i=1

βi
m−a.e.−→ β.

U and −T (µ, ·) concave ⇒ (βn) is a maximizing sequence.

Xavier Bacon An exchange economy problem with transport costs



(P )= sup
ν∈M+(X )N

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization
problem (P ) admits at least one solution.

Proof : N = 1, let νn =βn ·m be a maximizing sequence.

Mass constraints : ∀n ∈N,νn(X )= ∫
βn dm=µ(X )

=⇒ (βn) is bounded in L1(m)

Komlós=⇒ ∃β ∈ L1(m), ∃ subseq. (not relabed) s.t.

1
n

n∑
i=1

βi
m−a.e.−→ β.

U and −T (µ, ·) concave ⇒ (βn) is a maximizing sequence.

Xavier Bacon An exchange economy problem with transport costs



(P )= sup
ν∈M+(X )N

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization
problem (P ) admits at least one solution.

Proof : N = 1, let νn =βn ·m be a maximizing sequence.
Mass constraints : ∀n ∈N,νn(X )= ∫

βn dm=µ(X )

=⇒ (βn) is bounded in L1(m)

Komlós=⇒ ∃β ∈ L1(m), ∃ subseq. (not relabed) s.t.

1
n

n∑
i=1

βi
m−a.e.−→ β.

U and −T (µ, ·) concave ⇒ (βn) is a maximizing sequence.

Xavier Bacon An exchange economy problem with transport costs



(P )= sup
ν∈M+(X )N

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization
problem (P ) admits at least one solution.

Proof : N = 1, let νn =βn ·m be a maximizing sequence.
Mass constraints : ∀n ∈N,νn(X )= ∫

βn dm=µ(X )

=⇒ (βn) is bounded in L1(m)

Komlós=⇒ ∃β ∈ L1(m), ∃ subseq. (not relabed) s.t.

1
n

n∑
i=1

βi
m−a.e.−→ β.

U and −T (µ, ·) concave ⇒ (βn) is a maximizing sequence.

Xavier Bacon An exchange economy problem with transport costs



(P )= sup
ν∈M+(X )N

{
U (ν)−T (µ,ν) s.t. µi (X)= νi (X), i = 1, . . . ,N

}

Proposition (B.,Carlier,Nazaret, 2021)

If the assumptions above are satisfied, then the maximization
problem (P ) admits at least one solution.

Proof : N = 1, let νn =βn ·m be a maximizing sequence.
Mass constraints : ∀n ∈N,νn(X )= ∫

βn dm=µ(X )

=⇒ (βn) is bounded in L1(m)

Komlós=⇒ ∃β ∈ L1(m), ∃ subseq. (not relabed) s.t.

1
n

n∑
i=1

βi
m−a.e.−→ β.

U and −T (µ, ·) concave ⇒ (βn) is a maximizing sequence.
Xavier Bacon An exchange economy problem with transport costs



Fatou’s Lemma, sublinearity and concavity of U implies

lim

∫
U(x ,βn(x))dm(x) É

∫
U (x ,β(x)) dm(x).

νn =βn ·m bounded in M+(X ) ⇒ (not relabed) ∃ν ∈M+(X )
s.t.

νn
∗
* ν

since T (µ, .) is seq. weakly-∗ l.s.c. then

lim −T (µ,νn)É−T (µ,ν)

⇒ (P )=
∫
U (x ,β) dm(x)−T (µ,ν)

" With the first convergence (m-a.e.), β may violate the mass
constraint and with the second (weakly) convergence ν may not

belong to L1(m).
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Weak-∗ convergence ⇒ ν≥β ·m

Radon-Nikodym Theorem :

let βa ∈ L1 and νs ∈M+(X ) be
s.t.

ν=βa ·m+νs

with νs ⊥m

(=⇒∃A measurable s.t. νs(A)=m(Ac)= 0).

Let γ ∈Π(µ,ν) be optimal and decompose it into

γ= γ|X×A︸ ︷︷ ︸
γa

+γ|X×Ac︸ ︷︷ ︸
γs

Set

γ̃= γa+ (Id, Id)#αs ·m

where αs = proj#γs .
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then proj1#γ̃=µ and proj2#γ̃= (βa+αs)︸ ︷︷ ︸
β̃

·m

T (µ, β̃ ·m)É
∫
c dγ̃=

∫
c dγa since c(x ,x)= 0

É
∫
c d(γa+γs︸ ︷︷ ︸

γ

)=T (µ,ν)

⇒T (µ, β̃ ·m)ÉT (µ,ν)

Moreover, β̃Êβa Êβ then U (β̃ ·m)ÊU (β ·m) by monotonicity of
U .
Then β̃ solves (P ).
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Duality

Problem (P ) appears naturally as the dual of a convex
minimization problem over continuous functions ϕ ∈C (X ,R)N :

(P )= sup
ν

U (ν)−
N∑
i=1

Tci (µi ,νi )

= sup
ν

U (ν)− sup
ϕ

(
N∑
i=1

∫
X
ϕ
ci
i dµi +

∫
X
ϕi dνi

)

=sup
ν

inf
ϕ

U (ν)−
N∑
i=1

∫
X
ϕ
ci
i dµi −

N∑
i=1

∫
X
ϕi dνi

(no duality gap)= inf
ϕ

−
N∑
i=1

∫
X
ϕ
ci
i dµi︸ ︷︷ ︸

:=K (ϕ)

+sup
ν

[
U (ν)−

N∑
i=1

∫
X
ϕi dνi

]
︸ ︷︷ ︸

:=V (ϕ)

 .
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minimization problem over continuous functions ϕ ∈C (X ,R)N :

(P )= sup
ν

U (ν)−
N∑
i=1

Tci (µi ,νi )

= sup
ν

U (ν)− sup
ϕ

(
N∑
i=1

∫
X
ϕ
ci
i dµi +

∫
X
ϕi dνi

)

=sup
ν

inf
ϕ

U (ν)−
N∑
i=1

∫
X
ϕ
ci
i dµi −

N∑
i=1

∫
X
ϕi dνi

(no duality gap)= inf
ϕ

−
N∑
i=1

∫
X
ϕ
ci
i dµi︸ ︷︷ ︸

:=K (ϕ)

+sup
ν

[
U (ν)−

N∑
i=1

∫
X
ϕi dνi

]
︸ ︷︷ ︸

:=V (ϕ)

 .
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Calculations above suggest setting

K (ϕ)=−
N∑
i=1

∫
X
ϕ
ci
i dµi ,

V (ϕ)=
∫
X
V (x ,ϕ1(x), . . . ,ϕN(x))dm(x)

where V (x ,ϕ) := supβ∈RN+ U(x ,β)−∑N
i=1βiϕi and setting the

following dual problem :

(D)= inf
ϕ∈C(X ,R)N

K (ϕ)+V (ϕ).

Theorem (Strong duality)

Under the assumptions above, the following equality is satisfied

(D)= (P ).
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An equilibrium for an initial monetary endowment w is a system of
prices ϕ and a final endowment of the goods β satisfying:

Sellers at x maximize their profits by exporting their goods
α(x) :

profitsi (x)=max ϕi (y)−ci (x ,y)
(=−ϕci

i (x)
)

total profits(x)= profits(x) ·α(x)
For all y , consumers in y have an initial endowment w(y) and
buy βi (y) in order to maximize its utility under budget
constraint:

βi (y)= argmax
β

U(y ,β) :ϕ ·βÉ
export profit︷ ︸︸ ︷
−ϕc(y) ·α(y)+w(y)︸ ︷︷ ︸

total revenue


Markets are clear : one can find a plan γi ∈Π(αim,βim) such
that for every (x ,y) ∈ supp(γi ) we have

−ϕci
i (x)︸ ︷︷ ︸

profits of the seller

= ϕi (y)︸ ︷︷ ︸
price

− ci (x ,y)︸ ︷︷ ︸
transport cost
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Theorem
Let β and ϕ solves (P ) and (D) respectively and define

w =ϕ ·β+ϕc ·α

then (β,ϕ) is an equilibrium with monetary endowment w .
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Entropic optimal transport and Sinkhorn algorithm : popular
and efficient tool in computational optimal transport since
Cuturi’s paper (2013).
The algorithm below is based on a variant introduced by G.
Peyré (2015) in the context of Wasserstein gradient flows.
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An entropic approximation algorithm

X finite, m is the counting measure.
αi (x)> 0 denotes the initial endowment of location x ∈X in
the good i ∈ {1, . . . ,N}.

(D)= inf
ϕ∈RX×N

∑
y∈X

V (y ,ϕ(y))+
N∑
i=1

∑
x∈X

αi (x)

=−ϕc (x)︷ ︸︸ ︷
max
y∈X

{ϕi (y)−ci (x ,y)} .

Let ε> 0 be a regularization parameter,

max
y∈X

{ϕi (y)−ci (x ,y)} ← ε log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
︸ ︷︷ ︸

soft-max

.

(Dε)= inf
ϕ∈RX×N

∑
y∈X

V (y ,ϕ(y))+ε
N∑
i=1

∑
x∈X

αi (x)log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
.
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Optimality conditions
The optimality conditions for (Dε) writes:

−β(y) ∈ ∂V (y ,ϕ(y)), ∀y ∈X
where β is given by

βi (y)=
∑
x∈X

αi (x)
e
ϕi (y)−ci (x ,y)

ε∑
z∈X e

ϕi (z)−ci (x ,z)
ε

,y ∈X .

Introducing

γi (x ,y) :=αi (x)
e
ϕi (y)−ci (x ,y)

ε∑
z∈X e

ϕi (z)−ci (x ,z)
ε

we have γi ∈Π(αi ,βi ) and γi solves the entropic optimal transport
problem

T ε
ci (αi ,βi ) := inf

γ∈Π(αi ,βi )

∑
(x ,y)∈X 2

(ci (x ,y)+ε log(γ(x ,y))γ(x ,y).

Xavier Bacon An exchange economy problem with transport costs



Optimality conditions
The optimality conditions for (Dε) writes:

−β(y) ∈ ∂V (y ,ϕ(y)), ∀y ∈X
where β is given by

βi (y)=
∑
x∈X

αi (x)
e
ϕi (y)−ci (x ,y)

ε∑
z∈X e

ϕi (z)−ci (x ,z)
ε

,y ∈X .

Introducing

γi (x ,y) :=αi (x)
e
ϕi (y)−ci (x ,y)

ε∑
z∈X e

ϕi (z)−ci (x ,z)
ε

we have γi ∈Π(αi ,βi ) and γi solves the entropic optimal transport
problem

T ε
ci (αi ,βi ) := inf

γ∈Π(αi ,βi )

∑
(x ,y)∈X 2

(ci (x ,y)+ε log(γ(x ,y))γ(x ,y).

Xavier Bacon An exchange economy problem with transport costs



In fact, such a β solves the dual problem of (Dε):

sup
β∈RX×N+

∑
y∈X

U(y ,β(y))−
N∑
i=1

T ε
ci (αi ,βi ), (2.1)

which is the entropic regularization of (P ) with regularization
parameter ε.
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(Dε) can be reformulated by considering the convex function

(D̃ε)= inf
ϕ,ψ

Φε(ϕ,ψ),

Φε(ϕ,ψ)= ∑
y∈X

V (y ,ϕ(y))−
N∑
i=1

∑
x∈X

αi (x)ψi (x)+ε
N∑
i=1

∑
(x ,y)∈X 2

e
ψi (x)+ϕi (y)−ci (x ,y)

ε ,

since for fixed ϕ, the minimizer of ψ 7→Φε(ϕ,ψ) is explicitly given
by

ψi (x)= ε log(αi (x))−ε log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
so replacing in Φε, we get

inf
ψ
Φε(ϕ,ψ)=C+ ∑

y∈X
V (y ,ϕ(y))+ε

N∑
i=1

∑
x∈X

αi (x) log
( ∑
y∈X

e
ϕi (y)−ci (x ,y)

ε

)
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Coordinate descent/Sinkhorn

To solve (Dε) it is sufficient to solve (D̃ε) that is

inf
ϕ,ψ

Φε(ϕ,ψ)

which can be solved by coordinate descent: starting from (ψ0,ϕ0),
updates are computed as follows:

ψk+1 = argminψ∈RX×N Φ(ϕk ,ψ)

ϕk+1 = argminϕ∈RX×N Φ(ϕ,ψk+1)
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Notice that one of the update is explicity given by

ψk+1
i (x)= ε log(αi (x))−ε log

( ∑
y∈X

e
ϕk
i
(y)−ci (x ,y)

ε

)
The second update is (for i and y fixed) the same as solving a
one-dimensional strictly convex minimization problem.

Remark : if V is smooth and locally strongly convex ont its
domain, this scheme convergences linearly (Beck, Tetruashvili,
2013).
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The Cobb-Douglas case : if the utility is of the form

U(β)=
N∏
i=1

β
ai
i , ai > 0, a=

N∑
i=1

ai < 1

then V (ϕ)= (1−a)
N∏
i=1

a
ai

1−a
i ϕ

ai
a−1
i

and the second minimization step is reduced to find the root t of
the strictly monotone equation (for some A and b)

ettb =A

which can be solved using a dichotomy method.
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Merci pour votre attention.
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