# Optimal transport, economic exchanges and healthcare facilities

Xavier Bacon

Exposé au GTMod, Centre Borelli, ENS Paris-Saclay

4 nov. 2024

#### Introduction

- Post-doc SafePaw project (Societal Assets For E-healthcare Patient pAthWays), under the supervision of Julien Randon-Furling.
  - PhD A few models in vector-valued optimal transport, under the supervision of Bruno Nazaret.
  - Spatial exploratory analysis of patients' diagnosis
  - 2 A few words about classical optimal transport
  - Multi-species optimal transport
  - A spatial exchange economy problem (with G. Carlier and B. Nazaret)

#### Table of Contents

- Spatial exploratory analysis of patients' diagnosis
- Multi-species optimal transport
- 4 A spatial exchange economy problem (with G. Carlier and B. Nazaret)

#### Data available

Patients' diagnosis : information collected when a patient enters a health care facility, recorded as CMD (Catégorie Majeure de Diagnostic) :

- 01 = Affections du système nerveux,
- 02 = Affections de l'œil.
- 03 = Affections des oreilles, du nez, de la gorge, de la bouche et des dents

...



The Kullback-Leibler divergence is used to measure the statistical difference in the CMD's frequency distribution, that is

In the (classical) pointwise model, area A = municipality and area B = France.

# Multiscalar Lens Model (Olteanu & co, 2019)

■ Capturing both the national and the local scale.



Figure: Districts in Lvon (source : Wikipedia)

#### Aggregation process:

successively computing the divergence of the commune, then the divergence of commune gathered with its nearest neighbor etc. :

- div<sub>KI</sub> (Lyon<sub>1</sub> ∪ Lyon<sub>4</sub> | France)
- div kı (Lyon₁ ∪ Lyon₄ |France)
- $div_{KI}$  (Lyon<sub>1</sub> ∪ Lyon<sub>4</sub> ∪ Lyon<sub>6</sub>|France)

The **speed of convergence** of the curve tells us how far we have to move away from our starting municipality to look like the national mean.



(in progress) Take the socio-demographic information into account: Poisson regression, causal inference with observational data

#### Table of Contents

- Spatial exploratory analysis of patients' diagnosis
- 2 A few words about classical optimal transport
- Multi-species optimal transport
- 4 A spatial exchange economy problem (with G. Carlier and B. Nazaret)

# What is Optimal Transport? 1/2

How can we describe the transportation of mass?



$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$
 $\mu$  and  $\nu$  two weighted point clouds



$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$
 $\mu$  and  $\nu$  two weighted point clouds
 $c = c(x, y)$  transport cost



$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$

 $\mu$  and  $\nu$  two weighted point clouds

$$c = c(x, y)$$
 transport cost



$$Cost_c(\gamma) = \langle c | \gamma \rangle$$

transference plan



$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$

 $\mu$  and  $\nu$  two weighted point clouds

$$c = c(x, y)$$
 transport cost



$$\mathbf{Cost}_c(\gamma) = \langle c | \gamma \rangle$$

# What is Optimal Transport? 1/2

#### Among all transference, which is the best?



$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3, y_4\}$$

 $\mu$  and  $\nu$  two weighted point clouds

$$c = c(x, y)$$
 transport cost

$$Cost_c(\gamma) = \langle c | \gamma \rangle$$

# What is Optimal Transport? 2/2

- $\blacksquare \mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)$  are respectively the source and the target distributions.
- c = c(x, y) is the transport cost.

The (Static) Optimal Transport problem is defined as follows

$$\mathsf{OT}_c(\mu, \nu) = \min \left\{ \int_{X \times Y} c(x, y) \, d\gamma(x, y) \, \text{s.t. } \gamma \in \Pi(\mu, \nu) \right\},\,$$

where  $\Pi(\mu, \nu)$  denotes the set of all  $\gamma \in \mathscr{P}(X \times Y)$  having  $\mu$  and  $\nu$  as marginals, called transference plans.

$$\nabla$$
 (Discrete setting)  $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}, \ \nu = \sum_{j=1}^{m} \beta_j \delta_{y_j}, \text{ with } \sum_{i=1}^{n} \alpha_i = \sum_{j=1}^{m} \beta_j = 1, \ \alpha_i, \beta_j \ge 0,$ 

$$\mathsf{OT}_c(\mu,\nu) = \mathsf{OT}_c(\alpha,\beta) = \min\left\{\left\langle c \,|\, \gamma\right\rangle \text{ s.t. } \gamma \cdot \mathbb{I} = \alpha, \gamma^T \cdot \mathbb{I} = \beta\right\}.$$

#### p-Wasserstein distance

If (X,d) is a metric space and  $c=d^p$ , then

$$\operatorname{OT}_c$$
 is a distance on  $\mathscr{P}(X)$  if  $0 ,
 $\operatorname{OT}_c^{1/p}$  is a distance on  $\mathscr{P}(X)$  if  $p > 1$ .$ 

- $\blacksquare$  OT<sub>c</sub> metrizes the weak-\* convergence of probabilities (convergence in Law).
- If p = 2,  $OT_2$  is a geodesical distance: any pair of probabilities  $\mu$  and  $\nu$  can be connected by a continuous path of length  $OT_2(\mu, \nu)$ .

An external provider (say Alice) offers to transport the coal with her own trucks according to the following contract.



Alice chooses the price  $\varphi(x)$  for loading in x.

Alice chooses the price  $\psi(y)$  for unloading in y.

Alice assures me that it will cost less than doing it myself

$$\varphi(x) + \psi(y) \le c(x, y).$$

Alice charges me  $\langle \varphi | \mu \rangle + \langle \psi | \nu \rangle$ .

$$\mathsf{Dual}(\mu, \nu) = \mathsf{max} \{ \langle \varphi | \mu \rangle + \langle \psi | \nu \rangle : \varphi(x) + \psi(y) \leq c(x, y) \}.$$

(Alice problem)

# A short digression about duality 2/2

$$\mathsf{Dual}(\mu, \nu) = \mathsf{max}\{\langle \varphi | \mu \rangle + \langle \psi | \nu \rangle : \varphi(x) + \psi(y) \leq c(x, y)\}$$

What is the link between  $Dual(\mu, \nu)$  and  $OT(\mu, \nu)$ ?

### Theorem (strong duality)

 $\mathsf{Dual}(\mu, v) = \mathsf{OT}(\mu, v)$  and any solution of  $\mathsf{Dual}(\mu, v)$  leads to a solution of  $\mathsf{OT}(\mu, v)$ .

 $\mathbb{Q}$  OT $(\mu, \nu)$  is a optimization problem on  $\mathbb{R}^{n \times m}$  while Dual $(\mu, \nu)$  is on  $\mathbb{R}^{n+m}$ .

### Table of Contents

- Spatial exploratory analysis of patients' diagnosis
- A few words about classical optimal transport
- Multi-species optimal transport
- 4 A spatial exchange economy problem (with G. Carlier and B. Nazaret)

# From scalar OT to multi-species OT







$$\blacksquare \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$$

### From scalar OT to multi-species OT

#### Optimal Transport: 2 species



- $\blacksquare \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$
- Four costs  $c_{11}$ ,  $c_{12}$ ,  $c_{21}$ ,  $c_{22}$ .

# From scalar OT to multi-species OT

#### Optimal Transport: 2 species



- $\blacksquare \mu = \mu_1 + \mu_2 \in \mathscr{P}(X), \ \nu = \nu_1 + \nu_2 \in \mathscr{P}(Y).$
- Four costs  $c_{11}$ ,  $c_{12}$ ,  $c_{21}$ ,  $c_{22}$ .
- ...And as much transference plans  $\gamma_{11}$ ,  $\gamma_{12}$ ,  $\gamma_{21}$ ,  $\gamma_{22}$ .

### Distance on $\mathbb{R}^n_+$ -valued measures

■ Classical OT: if (X,d) is a Polish space, for  $p \in [1,\infty)$  and  $c = d^p$ ,  $\mathcal{T}^{1/p}$  is a distance on  $\mathcal{P}_p(X)$ .



■ Multi-species OT: setting  $c_{ij} = d_{ij}^p$ , we make the following assumption  $d_{ik}(x,z) \le d_{ii}(x,y) + d_{ik}(y,z)$  (Mixed Triangles Inequalities)

# Theorem (B. 2020)

Given  $n^2$  functions  $(d_{ii})$  defined on  $X \times X$  and  $\mathbb{R}_+$ -valued such that

- [1]  $\forall (i,j) \in [[1,n]]^2, d_{ij}$  is symmetric.
- [2] (MTI) is satisfied for all  $(i,j,k) \in [1,n]^3$  et  $(x,y,z) \in X^3$ .
- [3]  $\forall i \in [1, n], \forall x \in X, d_{ii}(x, x) = 0.$
- [4]  $\forall (i,j) \in [[1,n]]^2, i \neq j, \forall (x,y) \in X \times X, d_{ii}(x,y) \neq 0.$

Then MultiOT is a distance between multi-valued probabilities.

### Table of Contents

- Spatial exploratory analysis of patients' diagnosis
- A few words about classical optimal transport
- Multi-species optimal transport
- 4 A spatial exchange economy problem (with G. Carlier and B. Nazaret)

 $\blacksquare$  X is a compact metric space.

$$(\mathscr{P}) = \max \left\{$$

- $\blacksquare$  X is a compact metric space.
- $\blacksquare \mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$  are the source distributions of goods in region X.

$$(\mathscr{P}) = \max \left\{$$

- $\blacksquare$  X is a compact metric space.
- $\blacksquare \mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$  are the source distributions of goods in region X.
- $\blacksquare$   $v = (v_1, ..., v_N) \in \mathcal{M}_+(X)^N$  are the target distributions of goods in region X.

$$(\mathscr{P}) = \max \left\{$$

s.t. 
$$\mu_i(X) = \nu_i(X)$$
.

- $\blacksquare$  X is a compact metric space.
- $\blacksquare \mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$  are the source distributions of goods in region X.
- $\blacksquare$   $v = (v_1, ..., v_N) \in \mathcal{M}_+(X)^N$  are the target distributions of goods in region X.
- $\mathcal{U} = \mathcal{U}(\mathbf{v})$  is the average utility.

$$(\mathcal{P}) = \max \{ \mathcal{U}(\mathbf{v})$$
 s.t.  $\mu_i(X) = \mathbf{v}_i(X) \}.$ 

- $\blacksquare$  X is a compact metric space.
- $\blacksquare \mu = (\mu_1, ..., \mu_N) \in \mathcal{M}_+(X)^N$  are the source distributions of goods in region X.
- $v = (v_1, ..., v_N) \in \mathcal{M}_+(X)^N$  are the target distributions of goods in region X.
- $\mathcal{U} = \mathcal{U}(\mathbf{v})$  is the average utility.
- $\mathcal{T}(\mu, \nu) = \sum_{i=1}^{N} \mathsf{OT}_{c_i}(\mu_i, \nu_i)$  is the transport cost between  $\mu$  and  $\nu$ .

$$(\mathcal{P}) = \max_{\mathcal{P}} \left\{ \mathcal{U}(\boldsymbol{\nu}) - \mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu}) \text{ s.t. } \mu_i(X) = \boldsymbol{\nu_i}(X) \right\}.$$

### An example



### Economic interpretation

Let  $(\beta, \varphi)$  be optimal in  $(\mathscr{P})$  and  $(\mathscr{D})$ . Then we have an equilibrium for the initial monetary endowment  $\mathbf{w} = \langle \boldsymbol{\varphi}^c | \boldsymbol{\alpha} \rangle + \langle \boldsymbol{\varphi} | \boldsymbol{\beta} \rangle (= \mathcal{T}_c(\alpha, \beta))$  in the sense that:

**Sellers** at x maximize their profits by exporting their goods  $\alpha(x)$ :

$$\operatorname{profits}_{i}(x) = \max_{y} \ \varphi_{i}(y) - c_{i}(x, y) \ \left( = -\varphi_{i}^{c_{i}}(x) \right)$$
$$\operatorname{total} \ \operatorname{profits}(x) = \left\langle \operatorname{profits}(x) | \alpha(x) \right\rangle$$

Consumers in y have an initial endowment w(y) and buy  $\beta_i(y)$  in such a way:

$$\beta_{i}(y) = \underset{\beta}{\operatorname{argmax}} \left\{ U(y,\beta) \text{ s.t. } \langle \varphi | \beta \rangle \leq \underbrace{\frac{\operatorname{export profit}}{\langle -\varphi^{c}(y) | \alpha(y) \rangle + w(y)}}_{\text{total revenue}} \right\}$$

Markets are clear: it exists an optimal transport plan for all target endowments.

# Summarizing table

|        | Unregularized                                                              | arepsilon-regularized                                                                                                                          |
|--------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Primal | $\sup_{\mathbf{v}} \mathcal{U}(\mathbf{v}) - \mathcal{T}(\mu, \mathbf{v})$ | $\overbrace{\sup_{\boldsymbol{v}} \mathscr{U}(\boldsymbol{v}) - \mathscr{T}_{\varepsilon}(\mu, \boldsymbol{v})}^{(\mathscr{P}_{\varepsilon})}$ |
| Dual   | $\inf_{\varphi} \mathcal{K}(\varphi) + \mathcal{V}(\varphi)$               | $\inf_{\varphi} \mathcal{V}(\varphi) + \sum_{x \in X} \mu(x) \operatorname{softmax}_{\varepsilon}(\varphi - c(x, \cdot))$                      |

In order to solve 
$$(\mathscr{P}) \leftarrow$$
 introduce  $(\mathscr{P}_{\varepsilon})$ 
 $\iff$  solving  $(\mathscr{D}_{\varepsilon})$ 
 $\rightarrow$  we solve it by coordinate ascent (linear convergence)

### Conclusion

Merci pour votre attention!