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Bibliography. — I based these notes on Agueh and Carlier seminal article [ACII] for the
section on barycenters. The section about quadratic optimal transport and the one dimensional
case comes from the two monographies of Villani [Vil21] and Santambrogio [Sanl5]. To go
further, especially concerning the use of Wasserstein barycenters in data science, we may look at
the book [PCT19| of Cuturi and Peyré whose a part of it is devoted to this subject.

1 Definition and computation

Barycenter in normed vector spaces. — Let N € N* be an integer greater than 1. In
a real normed vector space (say) &£, a barycenter (or weighted average) of a finite family of £
(yi)N., is defined as the unique vector z* € £ satisfying the equation

N
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where A1, ..., Ay = 0 are for some weights that sum to 1. It is clear that the equation above is
equivalent to
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which is a more convenient equation once we want to extend this notion to non vector space such
as P(X) the space of probability over a given set X.

Barycenters in Wasserstein spaces. — In what follows, let us fix a non-zero integer d € N*.
X will denote a subset of R?, typically R? itself or sometimes for simplicity (especially when we
will dealing with duality) a compact of R?. Finally notice that most of the following development
can be extended to any metric space.

Let vq, ..., vy € P(X) be N probability measures on X and Ay, ..., Ay € Ry be N positive
real numbers such that

N
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A Wasserstein barycenter of the family v = (1;)Y; associated to the weights A\ = (X\;)¥; and

denoted by bary(v) is defined as a solution of the following minimization problem

N
bary(v) € argmin {Z %Wﬁ(u,w) RS P(X)}

i=1



Remark : non uniqueness. — Contrary to the normed case, the uniqueness of such a
barycenter is not always satisfied (see the figure below).
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Two barycenters

A counterexample to uniqueness : X = S' endowed with the angular distance.

However, uniqueness is satisfied once one of the v; admits a density with respect to the
Lebesgue measure. For a proof of a more general result, see the seminal article of Wasserstein
barycenters [AC11]. From now on, we will assume that at least one v; admits a density
with respect to the Lebesgue measure and so ensure the uniqueness of bar)(v).

Multi-marginal transportation problem. — In order to calculate bary(v), we introduce
an auxiliary problem. For this purpose, for every = (x1,...,2x5) € RY, we denote by B(x)
the euclidean barycenter of z1,...,zyN that is

N
i=1

and introduce the auxiliary problem

N
inf{/Xd;;im *B(x)|2d’y($1,...,xN) Ty € H(V1,...,I/N)}, (Q)

where (v, ..., vy) denotes the set of probability measures on X having v; as marginals. The
problem above is called the multi-marginal transportation problem and its interest lies in
the next crucial result:

Link between bary(v) and (Q). — Let v be a solution a solution of (Q), then
bary(v) = B#y.

Proof. See Proposition 4.2. in [ACI1]. The essential tool in this proof is the concept of measure’s
disintegration.



2 A case study for N =2

2.1 A few words on quadratic optimal transport

From now on, we fix the number of marginals N equals to 2, the dimension d to 1 and for calculus
simplicity, we assume moreover that Ay = As = 1. Then, (Q) becomes

wt{ [ S = B+ oz - B dy(e): 3 € Toa,mm) 1)

where B is given for every z = (z1,22) € R? by

1+ 2o

B(z) = 5

Notice that this minimization problem is nothing less than the classical Kantorovitch optimal
transport problem for the particular cost

1 1
c(z1,m2) = Z|lz1 — M(z)* + S|22 — M(2)]*
2 2

Primal and dual. — Developing the squares in leads us easily to the equivalent maxi-
mization problen]

sup {//RXRxlxz dy(z) : v € (v, 1/2)} ) (P)

In order to study this new problem, the key tool is the so-called dual problem of (Q), defined as
the minimization problem

inf{/chl(xl)dyl(:rl)+/R<p(:c2)d1/2(x2):cpl(x1)+<p2(9:2) > 2129, V(21, 20) GRQ}. (P*)

where the infimum is taken over continuous functions 1, ¢o vanishing at inﬁnityﬂ

Reminder : why duality? — The main interest of introducing the dual problem (P*) is
to obtain an equation relying any solution (say) v of (P) to any solution (say) (y1,p2) of (P*).
To establish such an equation, recall that according to the no-duality gap theorem, we have the
equality

(P) = (P")

rewritten as, admitting the existence of a maximizer and a minimizer,

//RXR.Z‘ll‘Q dy(z) = /R(Pl(ﬂjl)dVl(.Tl)—|—/R(p(x2)d1/2(x2)

where

v € argmax(P) and (¢1,¢2) € argmin(P*).

1In the sense that any minimizer of the first one is a maximizer of the second and vice versa.
2If we are reduced to a compact subset of R, the vanishing at infinity assumption disappears.



The following equation, satisfied for almost every (z1,x2) with respect to v, follows
P1(71) + p2(z2) = T122. (Optimality equation)

If we assume moreover that ¢ (z1) and pa(x9) are differentiable, we obtain

¢y (a1) = 22

Po(w2) = 11
for every (x1,x2) belonging to the support of «. Looking at the first equation shows that zo is
a function of x1, so the support of v is included in a graph of a function T' = T'(z1).

2.2 One dimensional case

From now on, we will recall basic tools used in the optimal transport theory in the one dimensional
case in order to achieve our goal :

How do we compute v the solution of (P) ?

From now on, we assume that both vy and v, admits a density with respect to the Lebesgue
measure. We begin by a fundamental criterion.

Optimality criterion in one dimension. — If the support of v is included onto a graph of
a non-decreasing function T'= T'(z), then v is optimal in (P). The converse is true as well.
Proof. See [Vil21], Proposition 2.24 and the commentary below the Open Problem 2.25.

As a consequence, it is sufficient to find a non-decreasing function 7' such that T#v; = vy

and set v = (Id, T')#v;. For this purpose, we must recall some basics definitions.

Cumulative distribution function. — Given a probability measure p € P(X), its cumula-
tive distribution function F), is defined for z € R as

Fu(z) = p((—00,2])

and is non-decreasing, right-continuous everywhere and continuous at any non-atomic point of

L.
We wish to inverse such a function but unfortunately F), is not strictly non-decreasing (it is
the case when the support of 1 is R). It admits nonetheless a kind of a pseudo-inverse denoted

by F, ;[fl]. Moreover a formula is given by
Fi7(z) =inf{t e R: F(t) > a}
Now we set
T=F;YoF,
Notice that such a map is monotone non-decreasing by composition. It is sufficient to prove that

T#l/l = V9

For that purpose we need two lemmas:



Lemma 1. — If p is atomless, then
(Fy) #p = Leb[o,l]
Lemma 2. — Without any restriction on g,

(Fl[[l]) # Lebp ) = p

Proof’s idea of Lemma 1. If the support of p is assume to be equals to R, then the infimum in
the formula of F,£_1] is attained and moreover FF[L_H is in fact the inverse of F),. Then it is easy

to check that for every a € (0,1),

pu((0,a)) = a
and conclude by characterization of the Lebesgue measure.

Proof’s idea of Lemma 2. For every a € (0,1),

Lebyo1) ({z € 0,1 F{ (@) <a}) = Lebyy (o € [0,1] 1 2 < Fu(a)})
= Flu(a)

which is sufficient to conclude.
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