A few words on Wasserstein barycenters

Xavier Bacon
15/02/2024, SAMM's working group

Bibliography. - I based these notes on Agueh and Carlier seminal article AC11 for the section on barycenters. The section about quadratic optimal transport and the one dimensional case comes from the two monographies of Villani Vil21 and Santambrogio San15. To go further, especially concerning the use of Wasserstein barycenters in data science, we may look at the book $\left[\mathrm{PC}^{+} 19\right]$ of Cuturi and Peyré whose a part of it is devoted to this subject.

1 Definition and computation

Barycenter in normed vector spaces. - Let $N \in \mathbb{N}^{*}$ be an integer greater than 1 . In a real normed vector space (say) \mathcal{E}, a barycenter (or weighted average) of a finite family of \mathcal{E} $\left(y_{i}\right)_{i=1}^{N}$ is defined as the unique vector $x^{*} \in \mathcal{E}$ satisfying the equation

$$
\sum_{i=1}^{N} \lambda_{i}\left(x^{*}-y_{i}\right)=0
$$

where $\lambda_{1}, \ldots, \lambda_{N} \geqslant 0$ are for some weights that sum to 1 . It is clear that the equation above is equivalent to

$$
x^{*}=\underset{x \in \mathcal{E}}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{\lambda_{i}}{2}\left\|x-y_{i}\right\|^{2},
$$

which is a more convenient equation once we want to extend this notion to non vector space such as $\mathcal{P}(X)$ the space of probability over a given set X.

Barycenters in Wasserstein spaces. - In what follows, let us fix a non-zero integer $d \in \mathbb{N}^{*}$. X will denote a subset of \mathbb{R}^{d}, typically \mathbb{R}^{d} itself or sometimes for simplicity (especially when we will dealing with duality) a compact of \mathbb{R}^{d}. Finally notice that most of the following development can be extended to any metric space.

Let $\nu_{1}, \ldots, \nu_{N} \in \mathcal{P}(X)$ be N probability measures on X and $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be N positive real numbers such that

$$
\sum_{i=1}^{N} \lambda_{i}=1
$$

A Wasserstein barycenter of the family $\nu=\left(\nu_{i}\right)_{i=1}^{N}$ associated to the weights $\lambda=\left(\lambda_{i}\right)_{i=1}^{N}$ and denoted by $\operatorname{bar}_{\lambda}(\nu)$ is defined as a solution of the following minimization problem

$$
\operatorname{bar}_{\lambda}(\nu) \in \operatorname{argmin}\left\{\sum_{i=1}^{N} \frac{\lambda_{i}}{2} W_{2}^{2}\left(\mu, \nu_{i}\right): \mu \in \mathcal{P}(X)\right\}
$$

Remark : non uniqueness. - Contrary to the normed case, the uniqueness of such a barycenter is not always satisfied (see the figure below).

A counterexample to uniqueness : $X=\mathbb{S}^{1}$ endowed with the angular distance.

However, uniqueness is satisfied once one of the ν_{i} admits a density with respect to the Lebesgue measure. For a proof of a more general result, see the seminal article of Wasserstein barycenters AC11. From now on, we will assume that at least one ν_{i} admits a density with respect to the Lebesgue measure and so ensure the uniqueness of $\operatorname{bar}_{\lambda}(\nu)$.

Multi-marginal transportation problem. - In order to calculate $\operatorname{bar}_{\lambda}(\nu)$, we introduce an auxiliary problem. For this purpose, for every $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$, we denote by $B(x)$ the euclidean barycenter of x_{1}, \ldots, x_{N} that is

$$
B(x)=\sum_{i=1}^{N} \lambda_{i} x_{i}
$$

and introduce the auxiliary problem

$$
\begin{equation*}
\inf \left\{\int_{X^{d}} \sum_{i=1}^{N} \frac{\lambda_{i}}{2}\left|x_{i}-B(x)\right|^{2} \mathrm{~d} \gamma\left(x_{1}, \ldots, x_{N}\right): \gamma \in \Pi\left(\nu_{1}, \ldots, \nu_{N}\right)\right\} \tag{Q}
\end{equation*}
$$

where $\Pi\left(\nu_{1}, \ldots, \nu_{N}\right)$ denotes the set of probability measures on X^{N} having ν_{i} as marginals. The problem above is called the multi-marginal transportation problem and its interest lies in the next crucial result:

Link between $\operatorname{bar}_{\lambda}(\nu)$ and (\mathcal{Q}). - Let γ be a solution a solution of (\mathcal{Q}), then

$$
\operatorname{bar}_{\lambda}(\nu)=B \# \gamma
$$

Proof. See Proposition 4.2. in AC11. The essential tool in this proof is the concept of measure's disintegration.

2 A case study for $N=2$

2.1 A few words on quadratic optimal transport

From now on, we fix the number of marginals N equals to 2 , the dimension d to 1 and for calculus simplicity, we assume moreover that $\lambda_{1}=\lambda_{2}=1$. Then, (\mathcal{Q}) becomes

$$
\begin{equation*}
\inf \left\{\iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2}\left|x_{1}-B(x)\right|^{2}+\frac{1}{2}\left|x_{2}-B(x)\right|^{2} \mathrm{~d} \gamma(x): \gamma \in \Pi\left(\nu_{1}, \nu_{2}\right)\right\} \tag{1}
\end{equation*}
$$

where B is given for every $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ by

$$
B(x)=\frac{x_{1}+x_{2}}{2}
$$

Notice that this minimization problem is nothing less than the classical Kantorovitch optimal transport problem for the particular cost

$$
c\left(x_{1}, x_{2}\right)=\frac{1}{2}\left|x_{1}-M(x)\right|^{2}+\frac{1}{2}\left|x_{2}-M(x)\right|^{2} .
$$

Primal and dual. - Developing the squares in (1) leads us easily to the equivalent maximization problem ${ }^{1}$

$$
\begin{equation*}
\sup \left\{\iint_{\mathbb{R} \times \mathbb{R}} x_{1} x_{2} \mathrm{~d} \gamma(x): \gamma \in \Pi\left(\nu_{1}, \nu_{2}\right)\right\} . \tag{P}
\end{equation*}
$$

In order to study this new problem, the key tool is the so-called dual problem of (\mathcal{Q}), defined as the minimization problem

$$
\begin{equation*}
\inf \left\{\int_{\mathbb{R}} \varphi_{1}\left(x_{1}\right) \mathrm{d} \nu_{1}\left(x_{1}\right)+\int_{\mathbb{R}} \varphi\left(x_{2}\right) \mathrm{d} \nu_{2}\left(x_{2}\right): \varphi_{1}\left(x_{1}\right)+\varphi_{2}\left(x_{2}\right) \geqslant x_{1} x_{2}, \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right\} \tag{*}
\end{equation*}
$$

where the infimum is taken over continuous functions φ_{1}, φ_{2} vanishing at infinity ${ }^{2}$
Reminder : why duality? - The main interest of introducing the dual problem (\mathcal{P}^{*}) is to obtain an equation relying any solution (say) γ of (\mathcal{P}) to any solution (say) $\left(\varphi_{1}, \varphi_{2}\right)$ of (\mathcal{P}^{*}). To establish such an equation, recall that according to the no-duality gap theorem, we have the equality

$$
(\mathcal{P})=\left(\mathcal{P}^{*}\right)
$$

rewritten as, admitting the existence of a maximizer and a minimizer,

$$
\iint_{\mathbb{R} \times \mathbb{R}} x_{1} x_{2} \mathrm{~d} \gamma(x)=\int_{\mathbb{R}} \varphi_{1}\left(x_{1}\right) \mathrm{d} \nu_{1}\left(x_{1}\right)+\int_{\mathbb{R}} \varphi\left(x_{2}\right) \mathrm{d} \nu_{2}\left(x_{2}\right)
$$

where

$$
\gamma \in \operatorname{argmax}(\mathcal{P}) \text { and }\left(\varphi_{1}, \varphi_{2}\right) \in \operatorname{argmin}\left(\mathcal{P}^{*}\right)
$$

[^0]The following equation, satisfied for almost every $\left(x_{1}, x_{2}\right)$ with respect to γ, follows

$$
\varphi_{1}\left(x_{1}\right)+\varphi_{2}\left(x_{2}\right)=x_{1} x_{2} . \quad(\text { Optimality equation) }
$$

If we assume moreover that $\varphi_{1}\left(x_{1}\right)$ and $\varphi_{2}\left(x_{2}\right)$ are differentiable, we obtain

$$
\begin{aligned}
& \varphi_{1}^{\prime}\left(x_{1}\right)=x_{2} \\
& \varphi_{2}^{\prime}\left(x_{2}\right)=x_{1}
\end{aligned}
$$

for every $\left(x_{1}, x_{2}\right)$ belonging to the support of γ. Looking at the first equation shows that x_{2} is a function of x_{1}, so the support of γ is included in a graph of a function $T=T\left(x_{1}\right)$.

2.2 One dimensional case

From now on, we will recall basic tools used in the optimal transport theory in the one dimensional case in order to achieve our goal :

$$
\text { How do we compute } \gamma \text { the solution of }(\mathcal{P}) \text { ? }
$$

From now on, we assume that both ν_{1} and ν_{2} admits a density with respect to the Lebesgue measure. We begin by a fundamental criterion.

Optimality criterion in one dimension. - If the support of γ is included onto a graph of a non-decreasing function $T=T(x)$, then γ is optimal in (\mathcal{P}). The converse is true as well.

Proof. See Vil21, Proposition 2.24 and the commentary below the Open Problem 2.25.
As a consequence, it is sufficient to find a non-decreasing function T such that $T \# \nu_{1}=\nu_{2}$ and set $\gamma=(\operatorname{Id}, T) \# \nu_{1}$. For this purpose, we must recall some basics definitions.

Cumulative distribution function. - Given a probability measure $\mu \in \mathcal{P}(X)$, its cumulative distribution function F_{μ} is defined for $x \in \mathbb{R}$ as

$$
F_{\mu}(x)=\mu((-\infty, x])
$$

and is non-decreasing, right-continuous everywhere and continuous at any non-atomic point of μ.

We wish to inverse such a function but unfortunately F_{μ} is not strictly non-decreasing (it is the case when the support of μ is \mathbb{R}). It admits nonetheless a kind of a pseudo-inverse denoted by $F_{\mu}^{[-1]}$. Moreover a formula is given by

$$
F_{\mu}^{[-1]}(x)=\inf \{t \in \mathbb{R}: F(t) \geqslant x\}
$$

Now we set

$$
T=F_{\nu_{2}}^{[-1]} \circ F_{\nu_{1}}
$$

Notice that such a map is monotone non-decreasing by composition. It is sufficient to prove that

$$
T \# \nu_{1}=\nu_{2}
$$

For that purpose we need two lemmas:

Lemma 1. - If μ is atomless, then

$$
\left(F_{\mu}\right) \# \mu=\operatorname{Leb}_{[0,1]}
$$

Lemma 2. - Without any restriction on μ,

$$
\left(F_{\mu}^{[-1]}\right) \# \operatorname{Leb}_{[0,1]}=\mu
$$

Proof's idea of Lemma 1. If the support of μ is assume to be equals to \mathbb{R}, then the infimum in the formula of $F_{\mu}^{[-1]}$ is attained and moreover $F_{\mu}^{[-1]}$ is in fact the inverse of F_{μ}. Then it is easy to check that for every $a \in(0,1)$,

$$
\mu([0, a))=a
$$

and conclude by characterization of the Lebesgue measure.
Proof's idea of Lemma 2. For every $a \in(0,1)$,

$$
\begin{aligned}
\operatorname{Leb}_{[0,1]}\left(\left\{x \in[0,1]: F_{\mu}^{[-1]}(x) \leqslant a\right\}\right) & =\operatorname{Leb}_{[0,1]}\left(\left\{x \in[0,1]: x \leqslant F_{\mu}(a)\right\}\right) \\
& =F_{\mu}(a)
\end{aligned}
$$

which is sufficient to conclude.

References

[AC11] Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on Mathematical Analysis, 43(2):904-924, 2011.
[$\left.\mathrm{PC}^{+} 19\right]$ Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. Foundations and Trends \circledR in Machine Learning, 11(5-6):355-607, 2019.
[San15] Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.
[Vil21] Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

[^0]: ${ }^{1}$ In the sense that any minimizer of the first one is a maximizer of the second and vice versa.
 ${ }^{2}$ If we are reduced to a compact subset of \mathbb{R}, the vanishing at infinity assumption disappears.

