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Bibliography. — I based these notes on Agueh and Carlier seminal article [AC11] for the
section on barycenters. The section about quadratic optimal transport and the one dimensional
case comes from the two monographies of Villani [Vil21] and Santambrogio [San15]. To go
further, especially concerning the use of Wasserstein barycenters in data science, we may look at
the book [PC+19] of Cuturi and Peyré whose a part of it is devoted to this subject.

1 Definition and computation
Barycenter in normed vector spaces. — Let N ∈ N∗ be an integer greater than 1. In

a real normed vector space (say) E , a barycenter (or weighted average) of a finite family of E
(yi)

N
i=1 is defined as the unique vector x∗ ∈ E satisfying the equation

N∑
i=1

λi(x
∗ − yi) = 0

where λ1, . . . , λN ⩾ 0 are for some weights that sum to 1. It is clear that the equation above is
equivalent to

x∗ = argmin
x∈E

N∑
i=1

λi

2
∥x− yi∥2,

which is a more convenient equation once we want to extend this notion to non vector space such
as P(X) the space of probability over a given set X.

Barycenters in Wasserstein spaces. — In what follows, let us fix a non-zero integer d ∈ N∗.
X will denote a subset of Rd, typically Rd itself or sometimes for simplicity (especially when we
will dealing with duality) a compact of Rd. Finally notice that most of the following development
can be extended to any metric space.

Let ν1, . . . , νN ∈ P(X) be N probability measures on X and λ1, . . . , λN ∈ R+ be N positive
real numbers such that

N∑
i=1

λi = 1.

A Wasserstein barycenter of the family ν = (νi)
N
i=1 associated to the weights λ = (λi)

N
i=1 and

denoted by barλ(ν) is defined as a solution of the following minimization problem

barλ(ν) ∈ argmin

{
N∑
i=1

λi

2
W 2

2 (µ, νi) : µ ∈ P(X)

}
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Remark : non uniqueness. — Contrary to the normed case, the uniqueness of such a
barycenter is not always satisfied (see the figure below).

δN

δS

Two barycenters

A counterexample to uniqueness : X = S1 endowed with the angular distance.

However, uniqueness is satisfied once one of the νi admits a density with respect to the
Lebesgue measure. For a proof of a more general result, see the seminal article of Wasserstein
barycenters [AC11]. From now on, we will assume that at least one νi admits a density
with respect to the Lebesgue measure and so ensure the uniqueness of barλ(ν).

Multi-marginal transportation problem. — In order to calculate barλ(ν), we introduce
an auxiliary problem. For this purpose, for every x = (x1, . . . , xN ) ∈ RN , we denote by B(x)
the euclidean barycenter of x1, . . . , xN that is

B(x) =

N∑
i=1

λixi

and introduce the auxiliary problem

inf

{∫
Xd

N∑
i=1

λi

2
|xi −B(x)|2 dγ(x1, . . . , xN ) : γ ∈ Π(ν1, . . . , νN )

}
, (Q)

where Π(ν1, . . . , νN ) denotes the set of probability measures on XN having νi as marginals. The
problem above is called the multi-marginal transportation problem and its interest lies in
the next crucial result:

Link between barλ(ν) and (Q). — Let γ be a solution a solution of (Q), then

barλ(ν) = B#γ.

Proof. See Proposition 4.2. in [AC11]. The essential tool in this proof is the concept of measure’s
disintegration.
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2 A case study for N = 2

2.1 A few words on quadratic optimal transport
From now on, we fix the number of marginals N equals to 2, the dimension d to 1 and for calculus
simplicity, we assume moreover that λ1 = λ2 = 1. Then, (Q) becomes

inf

{∫∫
R×R

1

2
|x1 −B(x)|2 + 1

2
|x2 −B(x)|2 dγ(x) : γ ∈ Π(ν1, ν2)

}
, (1)

where B is given for every x = (x1, x2) ∈ R2 by

B(x) =
x1 + x2

2
.

Notice that this minimization problem is nothing less than the classical Kantorovitch optimal
transport problem for the particular cost

c(x1, x2) =
1

2
|x1 −M(x)|2 + 1

2
|x2 −M(x)|2.

Primal and dual. — Developing the squares in (1) leads us easily to the equivalent maxi-
mization problem1

sup

{∫∫
R×R

x1x2 dγ(x) : γ ∈ Π(ν1, ν2)

}
. (P)

In order to study this new problem, the key tool is the so-called dual problem of (Q), defined as
the minimization problem

inf

{∫
R
φ1(x1) dν1(x1) +

∫
R
φ(x2) dν2(x2) : φ1(x1) + φ2(x2) ⩾ x1x2,∀(x1, x2) ∈ R2

}
. (P∗)

where the infimum is taken over continuous functions φ1, φ2 vanishing at infinity2.

Reminder : why duality? — The main interest of introducing the dual problem (P∗) is
to obtain an equation relying any solution (say) γ of (P) to any solution (say) (φ1, φ2) of (P∗).
To establish such an equation, recall that according to the no-duality gap theorem, we have the
equality

(P) = (P∗)

rewritten as, admitting the existence of a maximizer and a minimizer,∫∫
R×R

x1x2 dγ(x) =

∫
R
φ1(x1) dν1(x1) +

∫
R
φ(x2) dν2(x2)

where

γ ∈ argmax(P) and (φ1, φ2) ∈ argmin(P∗).

1In the sense that any minimizer of the first one is a maximizer of the second and vice versa.
2If we are reduced to a compact subset of R, the vanishing at infinity assumption disappears.
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The following equation, satisfied for almost every (x1, x2) with respect to γ, follows

φ1(x1) + φ2(x2) = x1x2. (Optimality equation)

If we assume moreover that φ1(x1) and φ2(x2) are differentiable, we obtain

φ
′

1(x1) = x2

φ
′

2(x2) = x1

for every (x1, x2) belonging to the support of γ. Looking at the first equation shows that x2 is
a function of x1, so the support of γ is included in a graph of a function T = T (x1).

2.2 One dimensional case
From now on, we will recall basic tools used in the optimal transport theory in the one dimensional
case in order to achieve our goal :

How do we compute γ the solution of (P) ?

From now on, we assume that both ν1 and ν2 admits a density with respect to the Lebesgue
measure. We begin by a fundamental criterion.

Optimality criterion in one dimension. — If the support of γ is included onto a graph of
a non-decreasing function T = T (x), then γ is optimal in (P). The converse is true as well.

Proof. See [Vil21], Proposition 2.24 and the commentary below the Open Problem 2.25.

As a consequence, it is sufficient to find a non-decreasing function T such that T#ν1 = ν2
and set γ = (Id, T )#ν1. For this purpose, we must recall some basics definitions.

Cumulative distribution function. — Given a probability measure µ ∈ P(X), its cumula-
tive distribution function Fµ is defined for x ∈ R as

Fµ(x) = µ((−∞, x])

and is non-decreasing, right-continuous everywhere and continuous at any non-atomic point of
µ.

We wish to inverse such a function but unfortunately Fµ is not strictly non-decreasing (it is
the case when the support of µ is R). It admits nonetheless a kind of a pseudo-inverse denoted
by F

[−1]
µ . Moreover a formula is given by

F [−1]
µ (x) = inf {t ∈ R : F (t) ⩾ x}

Now we set

T = F [−1]
ν2

◦ Fν1

Notice that such a map is monotone non-decreasing by composition. It is sufficient to prove that

T#ν1 = ν2

For that purpose we need two lemmas:
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Lemma 1. — If µ is atomless, then

(Fµ)#µ = Leb[0,1]

Lemma 2. — Without any restriction on µ,(
F [−1]
µ

)
#Leb[0,1] = µ

Proof’s idea of Lemma 1. If the support of µ is assume to be equals to R, then the infimum in
the formula of F [−1]

µ is attained and moreover F
[−1]
µ is in fact the inverse of Fµ. Then it is easy

to check that for every a ∈ (0, 1),

µ([0, a)) = a

and conclude by characterization of the Lebesgue measure.

Proof’s idea of Lemma 2. For every a ∈ (0, 1),

Leb[0,1]

({
x ∈ [0, 1] : F [−1]

µ (x) ⩽ a
})

= Leb[0,1] ({x ∈ [0, 1] : x ⩽ Fµ(a)})

= Fµ(a)

which is sufficient to conclude.
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